
Object-Oriented Design of a

Database Engine

for Multidimensional Discrete Data

P. Furtado

1

, R. Ritsch, N. Widmann, P. Zoller, P. Baumann

FORWISS (Bavarian Research Center for Knowledge-Based Systems)

Munich, Germany

Abstract

Multidimensional discrete data (MDD), i.e. arrays of arbitrary size, di-

mension and base type, occur in a variety of application �elds. The

object-oriented DBMS RasDaMan

2

provides domain-independent man-

agement of MDD. In the design and development of the RasDaMan sys-

tem, an informed assessment of current solutions to the management of

persistent MDD led to the identi�cation of major limitations remaining

in object and object relational DBMSs and to the proposal of alternative

approaches. In this paper, we present a discussion of those issues and

report on the main design decisions taken for the RasDaMan system.

1 Introduction

Raster data has become one of the most often occurring types of data in com-

puter systems. Examples of raster data objects range from common 1-D sound

sequences and 2-D images, to domain-speci�c objects originated from sampling

natural phenomena, like a 4-D climate simulation, or from arti�cial sources

such as simulators and business data analyzers, e.g. an 8-D OLAP datacube.

Even though these objects di�er greatly, they share the same basic properties

and requirements. Each raster data object is a multidimensional array of cells

of some base type, hence the term Multidimensional Discrete Data or MDD.

Although MDD forms a very well-de�ned category of data structures, for a long

time it has received surprisingly little attention among research communities

on object-orientation and database issues.

Investigation in MDD application areas such as medical imaging/PACS,

geographic information systems, and OLAP/data mining have shown that there

is a common need for MDD services, provided this functionality can be decou-

pled from the legion of application speci�c data formats in use. Functions such

as subcube extraction or projection, and aggregation along speci�ed dimensions

play an important role in all these application �elds [2]. Even content-based

retrieval methods require base MDD operations that only consider pixel level

information, with no interpretation of contents.

1

PhD work sponsored by a PRAXIS XXI scholarship.

2

sponsored by the European Commission in the ESPRIT Domain 4: Long-Term Research

under grant no. 20073.



In the RasDaMan system, an object-oriented approach to the modeling,

storage, manipulation, and retrieval of MDD in databases is followed which is

domain-independent. As described in [2], this approach responds to the partic-

ular requirements identi�ed for MDD management. Classical DBMS features

available on alphanumeric data such as declarativeness, orthogonality, optimiz-

ability, and data independence will be made available on MDD, too. An MDD

object is an array, a generic collection category, parametrized with its base

type, a C

++

type, and spatial domain consisting of the lower and upper bounds

for each dimension. Every boundary can be left variable, allowing the MDD

to grow and shrink during instance lifetime. A C

++

application programming

interface, RasLib, is o�ered which extends the ODMG-93 standard [5] binding

with MDD functionality.

The RasDaMan query language, RasQL, is used by applications to query

collections of MDD objects stored in the database. It provides a set of high-

level primitives for executing advanced operations on MDD. RasQL extends

standard SQL with MDD operators which can be roughly categorized as fol-

lows. Among operations changing the spatial domain of an MDD there are

rectangular cutouts (trimming) and extraction of lower-dimensional subarrays

(projection) of MDD. Other operations simultaneously change cells values, leav-

ing MDD geometry una�ected. With \local" operations, for each cell value v a

new value f(v) is derived; with \global" operations, additionally some neigh-

borhood of a cell is used for computation of the derived cell value (e.g., �ltering

and warping). Condensers, a general (second-order) concept generalizing the

relational aggregation operators, allow to selectively derive summary informa-

tion. Array traversal sequence is left unde�ned, thereby opening up space for

internal query optimization. MDD expressions can be used in the select part

of a query and, if the outermost expression result type is scalar, in the where

part.

The remainder is organized as follows. In Section 2, we discuss the state of

the art in MDD database technology. The following sections are dedicated to

the main components of the system. Section 5 presents conclusions.

2 Related Work

Current DBMSs do not support MDD directly. In order to store such data, the

classical approach is to revert to unstructured BLOBs, Binary Large Objects.

In this approach, the DBMS does not know anything about the application

semantics, but treats the multidimensional data item as a one-dimensional, en-

coded byte string. This solution is inadequate both from the point of view of

performance as well as from that of the data model and operations supported.

In the meanwhile, many relational and object-relational DBMSs enable the im-

plementation of new abstract data types (ADTs). In object DBMSs (ODBMSs)

[11] the data model allows implementation of any user de�ned classes which is

done in client code. In object-relational and relational DBMSs [7], de�nition

of new types is done by adding extensions to the core engine.

2



In ODBMSs, seamless integration of persistent data in the programming

language is a major goal [13]. For this reason, the properties and operations

of the object models they support are represented in object programming lan-

guages such as C

++

or Smalltalk. The shortcomings of the programming models

are then directly re
ected in the object model supported by the DBMS. Re-

garding MDD, very basic modeling is provided by object-oriented programming

languages. An array is a 1-D entity by default. Higher dimensional arrays are

modeled as arrays of arrays while their internal representation remains linear.

No high-level array operations or specialized storage structures are supported

in object-oriented programming languages of today, like Java [8], C

++

[19], and

Smalltalk [9]. Basically, only primitive operations like access to a cell or to the

whole array are possible.

ODBMSs rely on the extensibility of the underlying programming language

data model to support more complex data types. Even though, in applications

using only transient MDD objects, higher level support for MDD functionality

may be implemented with reasonable e�ort as a class, such a solution is not

feasible if persistent MDD objects are to be managed. If MDD functionality is

required in an application, it has to be fully implemented by the programmer.

Because the application is executed at the client side, it is not possible to

optimize operations on persistent MDD or adopt specialized storage structures,

which is important to enhance performance when dealing with typically large

MDD objects. Without those features, much time is spent on transmission of

unnecessary data between client and server.

Recently, several DBMSs have started supporting extensible engines. This

approach allows more 
exibility in the de�nition of complex types and execution

of operations on those types through extensions to the DBMS engine. Never-

theless, extensible types have to be implemented by very specialized DBMS

developers and the amount of implementation e�ort is enormous, particularly

if advanced storage structures are to be used. In addition, in those systems it

is not possible to extend the query language with new syntax, since only func-

tions can be called on newly de�ned data types. One of the most prominent

systems in this area is Illustra [18] which supports extensions through so-called

DataBlades. There are already individual DataBlade extensions for time-series

and temporal data, images, as well as 2-D and 3-D spatial and location data,

but up to now no DataBlade has been de�ned for MDD of arbitrary dimen-

sions. This is a major limitation since operations on multidimensional data

often involve operands or results of di�erent dimensionalities (for example, a

3-D object may have to be created from a set of 2-D ones, or an n-D MDD

object may result from the projection of an n+1-D object).

Specialized support for OLAP applications is provided by some relational

DBMSs [14]. Relations are used to store multidimensional OLAP data con-

sisting of sparsely (e.g., 5%) populated arrays in multidimensional domains.

As a consequence, performance and storage utilization in those systems is not

acceptable for generic MDD application areas dealing with dense multidimen-

sional arrays. Other application speci�c DBMSs are dedicated to high-level

operations on data for particular application areas. Paradise [15] is an example

3



of a DBMS designed for handling 2-D MDD in GIS applications. 2-D arrays

are modeled as ADTs in the object-relational model of SHORE [4]. E�cient

storage of the raster ADTs is provided in Paradise by tiling the data into a

set of SHORE objects. Paradise does not support MDD of more than two

dimensions, nor does it provide a general MDD query language.

3 Storage Management

Storage management in RasDaMan aims at providing e�cient access to MDD

objects or parts of them and transparent support for various storage devices.

Due to the typically large sizes of MDD objects and the type of operations

most often performed on them, specialized storage management is required to

manage those objects e�ciently.

3.1 Storage Structure

An MDD object is stored as a set of multidimensional rectangular subarrays,

tiles, each one stored in a di�erent object of the base DBMS. The cells of one

tile are stored as a linear array of bytes, i.e. a BLOB. The system supports

arbitrary tiling in that the tiles belonging to an object can have di�erent sizes

and can be unaligned, as illustrated on Figure 1 for a 2-D object. This allows

for more 
exible choice of the adequate tiling for each object. A more in-depth

discussion of tiling of MDD objects in RasDaMan can be found in [3].

Figure 1: Di�erent MDD Tiling Schemes.

For each object, a spatial index is created which maintains information

about the tiles of the object and corresponding spatial information consisting

of the coordinates for each tile and the current spatial domain for the object

(which may change during the object's lifetime). Di�erent index structures can

be created for di�erent objects, for example, a directory structure for a small

object with aligned tiles, or an R+-tree [16] for another object with a more

complex tiling scheme.

Further metadata, such as a reference to the cell type and the de�nition

spatial domain for the object, also has to be stored. Each persistent MDD

object is represented in the base DBMS by an instance of the DBMDDObject

class which gathers all the information about the object. This instance contains

4



the metadata and a reference to the object's index which, in turn, references

the object's tiles.

3.2 Base DBMS Interface

In the design of RasDaMan, an early decision was made for adopting an

ODBMS as the storage system. This decision was driven by four main fac-

tors:

� an ODBMS allows fast navigational access, which is of prime importance

for the implementation of tree-based indexes;

� the DBMS functionality already provided by the ODBMS - for instance,

transaction processing and recovery - is already supported and can be

used, whereas it would have to be fully implemented if another simple

storage system were used;

� the object-oriented MDD functionality can be smoothly integrated in the

ODBMS interface;

� using an ODBMS, the RasDaMan system, including the lower level stor-

age management modules, can be designed and implemented in an object-

oriented approach, leading to clear design and high quality extensible

code.

In order to choose the base ODBMS for RasDaMan, an assessment of several

systems, including a small benchmark, was undertaken. The most important

choice criteria was the performance of the system when dealing with large sets of

tiles which have to be stored as BLOBs. In addition, we considered that it would

be positive to have an ODMG conformant system, so that RasLib could be

plugged with the ODMG interface of the base system. The commercial ODBMS

O

2

[1] was chosen since it proved to be more e�cient than the other candidates

for the typical MDD data sets tested in the benchmark and it provides an

ODMG binding.

Even though the current version was implemented using the O

2

system, care

was taken to design the RasDaMan Storage Manager in a way to allow easy

portability to another base DBMS or storage system. This is achieved through

the Base DBMS Interface layer. The classes in this layer are responsible for all

accesses to persistent data. Their interfaces to upper level classes in the system

are kept as small and simple as possible. Porting of RasDaMan to another base

storage system only requires porting this layer to the new system. The Base

DBMS Interface layer provides storage of index structures, tiles, catalog data,

and MDD objects and collections of MDD objects, as well as general database

functionality.

Implementation of the storage management using the O

2

ODMG C

++

bind-

ing brought the well-known advantages of seamless integration provided by

ODBMSs. The binding allowed ease of implementation of persistent classes

according to an adequate object-oriented design. Persistent classes are de�ned

5



for MDD objects, collections of MDD objects, BLOB tiles, indexes and index

nodes. Instances of those classes are directly used in the C

++

code with no need

for translation between the database and the programming language data mod-

els, as it would be needed had another base storage system been adopted. It

also facilitated the use of late binding in the support for the same functionality

for persistent and transient data. Due to this, many steps in query evalua-

tion are implemented independently of whether the operands are persistent or

transient. At the same time, data may be accessed e�ciently through direct

navigation in the data structure. This is particularly important in the access

to tiles through the index structure.

Other aspects in the adoption of the used version of the O

2

binding were

not so positive. One major di�culty regarded error handling. The binding

provides no means to detect and deal with error conditions. For instance, if an

attempt is made to open a non-existent root object, an error is generated and

the application is simply aborted. Even though exception handling is assumed

in the ODMG standard, it is not implemented in the O

2

system. The solution

to this problem was the usage of lower level routines from the O

2

Engine to

test for error conditions.

More 
exibility or transparency in some features of the O

2

ODMG bind-

ing would be useful in the development of the storage manager, for example,

locking, memory management and object identi�ers. Explicit locks are not

supported by O

2

, but are convenient for more advanced applications and, in

particular, would be useful in the development of RasDaMan.

The second issue concerns automatic memory management. A counter of

references to persistent objects in main memory kept by O

2

allows automatic

deallocation when an object is no longer referenced. It is di�cult for the appli-

cation programmer to have information about whether memory is still allocated

for an object or not. In an application requiring much memory like ours, this

makes implementation more di�cult.

Finally, object identi�ers (OIDs) are hidden from the user in the current

version of O

2

. A new implementation of OIDs was therefore required in order

to uniquely identify MDD objects at the client side. It is our opinion that the

support for visible logical OIDs is important to allow some advanced function-

ality, e.g., for interdatabase references. In fact, such functionality is announced

for the new version of O

2

, even though not at the ODMG interface level.

3.3 Index Manager

The Index Manager is responsible for providing all information on access to

tiles of persistent MDD objects. The functionality supported by the Index

Manager includes identi�cation of tiles a�ected by a spatial access to an MDD

object, calculation of tiles access costs, and determining the most e�cient access

sequence to a set of tiles. Whenever classes responsible for query evaluation

require access to part of an object - typically a multidimensional subinterval of

the object's spatial domain - they send a message to the MDDObject to request

the set of tiles intersecting the area of interest. The MDDObject then calls the

6



appropriate method from the index member object to identify the tiles a�ected.

Search is performed using navigation in the persistent index structure and the

tiles of interest are returned to the caller in a collection.

In order to allow di�erent objects to have di�erent index structures, poly-

morphism is used. A super class de�nes the common interface for MDD objects

indexes which can then have several implementations as subclasses. The ex-

istence of di�erent indexes allows the most appropriate type of index to be

adopted for each object when it is �rst created. This is of interest due to the

arbitrary tiling: a complex spatial index may be required for an object stored

using nonaligned tiling, whereas the same index structure may lead to bad

storage utilization in another object having a simple aligned tiling. Having a

common indexing interface allows execution of the operations on MDD objects

without having to care about the type of index for each object. In addition,

this implementation allows us to easily add new index techniques to the Index

Manager.

4 Query Processing

Processing of queries begins with the translation of the textual query statement

into an internal tree-based representation. On this data structure, semantic

analysis and optimization take place before an evaluation plan is generated,

which �nally is executed at the tile level. Figure 2 illustrates the di�erent data

structures occurring in this process in rounded boxes and operations on them in

angular ones. The following subsections account for the object-oriented design

chosen for the di�erent structures.

Figure 2: Query Processing Steps.

4.1 Construction and Optimization of the Query Tree

The internal representation is an operator-based query tree which is a procedu-

ral description of the query based on operator and data
ow statements. Inner

nodes of the tree stand for operators and leaf nodes for data sources which, in

our case, are collections of MDD objects. From a data modeling point of view,

for each operation, be it a relational one, e.g. selection, or an MDD operation,

e.g. projection, a subclass of the node base class exists which inherits function-

ality like management of descendants or knowing about its parent. Therefore,

7



they all support the same interface and a query tree representing any query

statement can be set up using just the methods of the node base class.

Traversal of the tree is described with the type checking process. A pure

virtual declaration of the type checking method is declared in the common

superclass of all operator classes. This method then is implemented for each

speci�c operator; it takes care that type checking �rst is propagated to its

subtree and then the types of its own operands are veri�ed. At the end, a result

is passed to its parent. Usage of a common interface (pure virtual declaration in

a type generalization) and encapsulation of operator speci�c type checks within

the operators allow for type checking without knowing about the structure of

the operator tree, making extensions of new operators simple and less error-

prone.

Query rewrite is a process in which general-purpose heuristics drive seman-

tics preserving transformations. These transformations need to rearrange or

exchange operator nodes or even whole subtrees. According to the fact that all

operators share the node interface de�nition, modi�cations of the tree struc-

ture are mostly carried out with the methods of the node base class. Operator

speci�c information is just needed to ensure equivalence and whether the type

of a node is to be changed.

The evaluation model abstracts from special operators so that each opera-

tion is seen as a processing unit which consumes data from one or more input

streams, carries out a speci�c operation, and produces data sent into exactly

one output stream. By combining these processing units in such a way that an

output stream from one unit serves as one input stream to the following unit,

an evaluation tree is built. The structure is similar to the query tree, so the

operator nodes used for internal query representation are also used as elements

in the evaluation tree.

The evaluation strategy of the tree is demand driven and based on the ONC

protocol [10], according to which each processing unit supports the methods

open(), next() and close(). A processing unit (data producer) is �rst initial-

ized by sending an open() message to the object, then data items are received

by invoking next() as long as no out of data signal is received, and �nally the

producer is shut by calling close(). To evaluate a query, the output stream

of the root object is read using the ONC protocol. Invocations of open() and

close() are propagated through the whole tree. If next() of a processing unit

is called, then it is only passed to those input streams which actually provide

data necessary for computation of the next data item.

The protocol is implemented through inheritance of the stream functional-

ity and ad hoc polymorphism. The protocol methods are declared virtual in a

common superclass. The methods can provide default implementations which

propagate open() and close() to the descendants and just pass items from the

input stream to the output stream within the method next(). Each process-

ing unit type can then rede�ne the implementations according to its speci�c

functionality and late binding takes care of choosing the right implementation.

8



4.2 Execution Engine

The Execution Engine is responsible for executing basic operations used in the

operator nodes of the query plan. The functionality of the Execution Engine

is part of the Storage Manager modules where the classes for data sources are

de�ned. The basic data source is a collection of MDD, on which selection

operators can be applied to retrieve MDD objects. Finally the basic operations

are carried out on tiles, which are retrieved from the MDD objects. In the

following, the implementation of the usual arithmetic operations on numeric

base types or access to elements of a structured base type will be discussed.

While persistent C

++

as supported by the base DBMS O

2

o�ers the full

power of the object-oriented programming paradigm for specifying operations

on types, we did not use the C

++

type system. One reason for this is that

we use the base DBMS only as a storage manager (see Section 3.2); tiles are

stored as arrays of C

++

chars. Another reason is that it should be possible to

de�ne new structured base types for cells at runtime without shutting down or

even recompiling the RasDaMan server. With a strongly typed and compiled

language like C

++

new types can be used only after recompilation.

To support base types other than char, the RasDaMan DBMS has to pro-

vide its own internal type system. We implemented our type system in an

object-oriented way, supporting the ODMG-93 primitives like ULong or Bool

and structures. Our type system implementation uses metaclasses as in dy-

namic object oriented languages like Smalltalk [9] or CLOS [12]. For each base

type, a C

++

object is created which is an instance of a metaclass. For simple

base types, just one instance of the corresponding metaclass exists. For struc-

tured base types, one instance of the corresponding metaclass is created for

each user de�ned structured base type, which stores all information needed for

the structured type (e.g., name and type of its elements) in member variables.

Each metaclass knows how to carry out operations on cells of its type us-

ing a group of chars as operands. These operations are returned as function

objects if needed. Function objects or functors [6] overload the function call

operator operator() and can be used to implement higher order functions, i.e.

functions returning functions as a result, like provided in LISP [17]. Whenever

the executor carries out an operation on a tile, it requests a function object for

the operation from the metaclass. This has to be done only once for each tile,

the function object is then applied to each cell of the tile.

Given these function objects, the executor calls a method of the tile to carry

out an operation on all of its cells or a part speci�ed as a multidimensional

interval. It is the responsibility of the executor to break down MDD operations

on tiles, specifying, for each tile, the areas which are a�ected when carrying out

an operation involving two MDDs. The schema information, i.e. all instances of

metaclasses representing the simple base types supported by the system and the

user de�ned structured base types currently in use, is stored in the RasDaMan

DBMS. C

++

classes are used to do this which are made persistent with O

2

.

9



5 Conclusions

Compared to existing DBMSs, RasDaMan o�ers several innovative features re-

garding MDD management. An MDD object is modeled as an array with spec-

i�ed base type and multidimensional spatial domain. The conceptual MDD

model and its ODMG conformant binding provide seamless integration of per-

sistent MDD objects in C

++

applications. A query language allows execution

of complex, computation intensive operations on the RasDaMan server. A spe-

cialized storage structure for large MDD objects is adopted which is composed

of multidimensional tiles and spatial indexes on the tiles. Query evaluation

is performed at tile-level. Inheritance and ad hoc polymorphism are used to

implement the query tree evaluation protocol. Operations on tiles are executed

using function objects, which allow support for the RasDaMan provided MDD

operations also on MDD objects with user de�ned cell types.

Although the �rst version of the system does not fully exploit the optimiza-

tion potential, initial performance tests showed that both client-server data

transmission and storage structure have high impact on the execution perfor-

mance of MDD operations. A �rst test case assessed the in
uence of data trans-

mission on the overall performance. The same MDD operation was performed

both on the client and on the server running in two hosts located in a local net-

work, executing a simple trimming operation on the images of a collection. The

collection had four 2.5 megabytes (MB) satellite images corresponding to the

same geographical area and the trimmed subimages had 750 kilobytes (KB)

each. A performance gain higher than two was obtained for this case. A second

test case showed the impact of the tiling scheme on the speed of execution of

operations on MDD. In this case, a 40 MB 3-D object, consisting of tomogram

slices, was stored using two di�erent tiling schemes: cubes (100 KB each) and

slices of thickness one along the x-direction. The time required for executing

a z-projection on the sliced data was �ve times that required for the cubed

object. Such performance gains can only be achieved if internal support for

MDD is provided by the DBMS at the server side.

The implementation of basic storage management using the C

++

ODMG

binding of O

2

allowed a design of the database engine where the main entities

of the system like MDD objects, collections of MDD objects, and tiles, are mod-

eled directly as classes starting from the storage level up to the communication

module. The architecture of the system was designed to keep the interface

between modules small. This is particularly important in the Base DBMS In-

terface layer, in order to allow easy porting of the RasDaMan system to another

base storage system, and in the communication module. In this later case, the

e�cacy of the design was already proven when a necessary re-implementation

of the communication layer using a di�erent RPC system was done with little

e�ort. In the future, we intend to explore more advanced optimization tech-

niques and support new data types. Implementation of further operations such

as a�ne transformations (e.g., scaling and rotation) is also planned.

10



References

[1] F. Bancilhon, C. Delobel, P. Kanellakis: Building an Object-Oriented

Database System. Morgan Kaufmann Publishers, San Mateo-California, 1992.

[2] P. Baumann, P. Furtado, R. Ritsch, N. Widmann: Geo/Environmental and

Medical Data Management in the RasDaMan System. Proceedings of the

23rd VLDB Conference, Athens-Greece, 1997.

[3] P. Baumann, P. Furtado, R. Ritsch, N. Widmann: The RasDaMan Approach

to Multidimensional Database Management. Proceedings of the 1997 ACM

Symposium on Applied Computing, San Jose-California, February 1997,

pp. 166-173.

[4] M. Carey et al.: Shoring up Persistent Objects. Proceedings of the 1994

ACM-SIGMOD International Conference on Management of Data,

Minneapolis-Minnesota, 1994, pp. 383-394.

[5] R. Cattell: The Object Database Standard: ODMG-93. Morgan Kauf-

mann Publishers, 1996.

[6] J. Coplien: Advanced C

++

Programming Styles and Idioms. Addison

Wesley, 1992.

[7] J. Davis: INFORMIX-Universal Server: Extending The Relational

DBMS To Manage Complex Data. DataBase Associates International, In-

formix, 1996.

[8] D. Flanagan: Java in a Nutshell. O'Reilly & Associates, Inc., 1996.

[9] A. Goldberg, D. Robson: Smalltalk-80: the Language. AddisonWesley, 1989.

[10] G. Graefe: Query Evaluation Techniques for Large Databases. ACM Comput-

ing Surveys, 1993, vol. 25, no. 2, pp. 73-170.

[11] W. Kim, Ed.: Modern Database Systems: the Object Model, Interop-

erability, and Beyond. ACM Press, New York, 1995.

[12] G. Kiczales, J. des Rivires, D. Bobrow: The Art of the Metaobject Proto-

col. The MIT Press, 1991.

[13] M. Loomis: Object Databases: The Essentials. Addison-Wesley, 1995.

[14] Oracle: Oracle7 Spatial Data Option Overview. Oracle Corporation, 1996.

[15] J. Patel et al.: Building a Scalable GeoSpatial Database System: Technology,

Implementation, and Evaluation. Proceedings of the 1997 ACM-SIGMOD

International Conference on Management of Data, Tucson-Arizona, 1997.

[16] T. Sellis, N. Roussoupoulos, C. Faloutsos: The R+-tree: A Dynamic Index for

Multidimensional Objects. Proceedings of the 13th VLDB Conference,

Brighton-England, 1987, pp. 507-518.

[17] G. Steele Jr.: CommonLISP: The Language. Digital Press, 1984.

[18] M. Stonebreaker, D. Moore: Object-Relational DBMSs: The Next Great

Wave. Morgan Kaufmann Publishers, 1996.

[19] B. Stroustroup: The C

++

Programming Language. Addison-Wesley, 1991.

11


