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Abstract

Multidimensional discrete data (MDD), i.e. arrays of arbitrary size, di-
mension and base type, occur in a variety of application fields. The
object-oriented DBMS RasDaMan? provides domain-independent man-
agement of MDD. In the design and development of the RasDaMan sys-
tem, an informed assessment of current solutions to the management of
persistent MDD led to the identification of major limitations remaining
in object and object relational DBMSs and to the proposal of alternative
approaches. In this paper, we present a discussion of those issues and
report on the main design decisions taken for the RasDaMan system.

1 Introduction

Raster data has become one of the most often occurring types of data in com-
puter systems. Examples of raster data objects range from common 1-D sound
sequences and 2-D images, to domain-specific objects originated from sampling
natural phenomena, like a 4-D climate simulation, or from artificial sources
such as simulators and business data analyzers, e.g. an 8D OLAP datacube.
Even though these objects differ greatly, they share the same basic properties
and requirements. Each raster data object is a multidimensional array of cells
of some base type, hence the term Multidimensional Discrete Data or MDD.
Although MDD forms a very well-defined category of data structures, for a long
time it has received surprisingly little attention among research communities
on object-orientation and database issues.

Investigation in MDD application areas such as medical imaging/PACS,
geographic information systems, and OLAP /data mining have shown that there
is a common need for MDD services, provided this functionality can be decou-
pled from the legion of application specific data formats in use. Functions such
as subcube extraction or projection, and aggregation along specified dimensions
play an important role in all these application fields [2]. Even content-based
retrieval methods require base MDD operations that only consider pixel level
information, with no interpretation of contents.
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In the RasDaMan system, an object-oriented approach to the modeling,
storage, manipulation, and retrieval of MDD in databases is followed which is
domain-independent. As described in [2], this approach responds to the partic-
ular requirements identified for MDD management. Classical DBMS features
available on alphanumeric data such as declarativeness, orthogonality, optimiz-
ability, and data independence will be made available on MDD, too. An MDD
object is an array, a generic collection category, parametrized with its base
type, a C++ type, and spatial domain consisting of the lower and upper bounds
for each dimension. Every boundary can be left variable, allowing the MDD
to grow and shrink during instance lifetime. A C++ application programming
interface, RasLib, is offered which extends the ODMG-93 standard [5] binding
with MDD functionality.

The RasDaMan query language, RasQL, is used by applications to query
collections of MDD objects stored in the database. It provides a set of high-
level primitives for executing advanced operations on MDD. RasQL extends
standard SQL with MDD operators which can be roughly categorized as fol-
lows. Among operations changing the spatial domain of an MDD there are
rectangular cutouts (trimming) and extraction of lower-dimensional subarrays
(projection) of MDD. Other operations simultaneously change cells values, leav-
ing MDD geometry unaffected. With “local” operations, for each cell value v a
new value f (v) is derived; with “global” operations, additionally some neigh-
borhood of a cell is used for computation of the derived cell value (e.g., filtering
and warping). Condensers, a general (second-order) concept generalizing the
relational aggregation operators, allow to selectively derive summary informa-
tion. Array traversal sequence is left undefined, thereby opening up space for
internal query optimization. MDD expressions can be used in the select part
of a query and, if the outermost expression result type is scalar, in the where
part.

The remainder is organized as follows. In Section 2, we discuss the state of
the art in MDD database technology. The following sections are dedicated to
the main components of the system. Section 5 presents conclusions.

2 Related Work

Current DBMSs do not support MDD directly. In order to store such data, the
classical approach is to revert to unstructured BLOBs, Binary Large Objects.
In this approach, the DBMS does not know anything about the application
semantics, but treats the multidimensional data item as a one-dimensional, en-
coded byte string. This solution is inadequate both from the point of view of
performance as well as from that of the data model and operations supported.
In the meanwhile, many relational and object-relational DBMSs enable the im-
plementation of new abstract data types (ADTs). In object DBMSs (ODBMSs)
[11] the data model allows implementation of any user defined classes which is
done in client code. In object-relational and relational DBMSs [7], definition
of new types is done by adding extensions to the core engine.



In ODBMSs, seamless integration of persistent data in the programming
language is a major goal [13]. For this reason, the properties and operations
of the object models they support are represented in object programming lan-
guages such as C++ or Smalltalk. The shortcomings of the programming models
are then directly reflected in the object model supported by the DBMS. Re-
garding MDD, very basic modeling is provided by object-oriented programming
languages. An array is a 1-D entity by default. Higher dimensional arrays are
modeled as arrays of arrays while their internal representation remains linear.
No high-level array operations or specialized storage structures are supported
in object-oriented programming languages of today, like Java [8], C++ [19], and
Smalltalk [9]. Basically, only primitive operations like access to a cell or to the
whole array are possible.

ODBMSs rely on the extensibility of the underlying programming language
data model to support more complex data types. Even though, in applications
using only transient MDD objects, higher level support for MDD functionality
may be implemented with reasonable effort as a class, such a solution is not
feasible if persistent MDD objects are to be managed. If MDD functionality is
required in an application, it has to be fully implemented by the programmer.
Because the application is executed at the client side, it is not possible to
optimize operations on persistent MDD or adopt specialized storage structures,
which is important to enhance performance when dealing with typically large
MDD objects. Without those features, much time is spent on transmission of
unnecessary data between client and server.

Recently, several DBMSs have started supporting extensible engines. This
approach allows more flexibility in the definition of complex types and execution
of operations on those types through extensions to the DBMS engine. Never-
theless, extensible types have to be implemented by very specialized DBMS
developers and the amount of implementation effort is enormous, particularly
if advanced storage structures are to be used. In addition, in those systems it
is not possible to extend the query language with new syntax, since only func-
tions can be called on newly defined data types. One of the most prominent
systems in this area is Illustra [18] which supports extensions through so-called
DataBlades. There are already individual DataBlade extensions for time-series
and temporal data, images, as well as 2-D and 3-D spatial and location data,
but up to now no DataBlade has been defined for MDD of arbitrary dimen-
sions. This is a major limitation since operations on multidimensional data
often involve operands or results of different dimensionalities (for example, a
3-D object may have to be created from a set of 2-D ones, or an n-D MDD
object may result from the projection of an n+1-D object).

Specialized support for OLAP applications is provided by some relational
DBMSs [14]. Relations are used to store multidimensional OLAP data con-
sisting of sparsely (e.g., 5%) populated arrays in multidimensional domains.
As a consequence, performance and storage utilization in those systems is not
acceptable for generic MDD application areas dealing with dense multidimen-
sional arrays. Other application specific DBMSs are dedicated to high-level
operations on data for particular application areas. Paradise [15] is an example



of a DBMS designed for handling 2-D MDD in GIS applications. 2-D arrays
are modeled as ADTs in the object-relational model of SHORE [4]. Efficient
storage of the raster ADTs is provided in Paradise by tiling the data into a
set of SHORE objects. Paradise does not support MDD of more than two
dimensions, nor does it provide a general MDD query language.

3 Storage Management

Storage management in RasDaMan aims at providing efficient access to MDD
objects or parts of them and transparent support for various storage devices.
Due to the typically large sizes of MDD objects and the type of operations
most often performed on them, specialized storage management is required to
manage those objects efficiently.

3.1 Storage Structure

An MDD object is stored as a set of multidimensional rectangular subarrays,
tiles, each one stored in a different object of the base DBMS. The cells of one
tile are stored as a linear array of bytes, i.e. a BLOB. The system supports
arbitrary tiling in that the tiles belonging to an object can have different sizes
and can be unaligned, as illustrated on Figure 1 for a 2-D object. This allows
for more flexible choice of the adequate tiling for each object. A more in-depth
discussion of tiling of MDD objects in RasDaMan can be found in [3].

Aligned Tiling Nonaligned tiling

Figure 1: Different MDD Tiling Schemes.

For each object, a spatial index is created which maintains information
about the tiles of the object and corresponding spatial information consisting
of the coordinates for each tile and the current spatial domain for the object
(which may change during the object’s lifetime). Different index structures can
be created for different objects, for example, a directory structure for a small
object with aligned tiles, or an R+-tree [16] for another object with a more
complex tiling scheme.

Further metadata, such as a reference to the cell type and the definition
spatial domain for the object, also has to be stored. Each persistent MDD
object is represented in the base DBMS by an instance of the DBMDDObject
class which gathers all the information about the object. This instance contains



the metadata and a reference to the object’s index which, in turn, references
the object’s tiles.

3.2 Base DBMS Interface

In the design of RasDaMan, an early decision was made for adopting an
ODBMS as the storage system. This decision was driven by four main fac-
tors:

¢ an ODBMS allows fast navigational access, which is of prime importance
for the implementation of tree-based indexes;

e the DBMS functionality already provided by the ODBMS - for instance,
transaction processing and recovery - is already supported and can be
used, whereas it would have to be fully implemented if another simple
storage system were used;

e the object-oriented MDD functionality can be smoothly integrated in the
ODBMS interface;

e using an ODBMS, the RasDaMan system, including the lower level stor-
age management modules, can be designed and implemented in an object-
oriented approach, leading to clear design and high quality extensible
code.

In order to choose the base ODBMS for RasDaMan, an assessment, of several
systems, including a small benchmark, was undertaken. The most important
choice criteria was the performance of the system when dealing with large sets of
tiles which have to be stored as BLOBs. In addition, we considered that it would
be positive to have an ODMG conformant system, so that RasLib could be
plugged with the ODMG interface of the base system. The commercial ODBMS
O- [1] was chosen since it proved to be more efficient than the other candidates
for the typical MDD data sets tested in the benchmark and it provides an
ODMG binding.

Even though the current version was implemented using the O system, care
was taken to design the RasDaMan Storage Manager in a way to allow easy
portability to another base DBMS or storage system. This is achieved through
the Base DBMS Interface layer. The classes in this layer are responsible for all
accesses to persistent data. Their interfaces to upper level classes in the system
are kept as small and simple as possible. Porting of RasDaMan to another base
storage system only requires porting this layer to the new system. The Base
DBMS Interface layer provides storage of index structures, tiles, catalog data,
and MDD objects and collections of MDD objects, as well as general database
functionality.

Implementation of the storage management using the O, ODMG C++ bind-
ing brought the well-known advantages of seamless integration provided by
ODBMSs. The binding allowed ease of implementation of persistent classes
according to an adequate object-oriented design. Persistent classes are defined



for MDD objects, collections of MDD objects, BLOB tiles, indexes and index
nodes. Instances of those classes are directly used in the C++ code with no need
for translation between the database and the programming language data mod-
els, as it would be needed had another base storage system been adopted. It
also facilitated the use of late binding in the support for the same functionality
for persistent and transient data. Due to this, many steps in query evalua-
tion are implemented independently of whether the operands are persistent or
transient. At the same time, data may be accessed efficiently through direct
navigation in the data structure. This is particularly important in the access
to tiles through the index structure.

Other aspects in the adoption of the used version of the O2 binding were
not so positive. One major difficulty regarded error handling. The binding
provides no means to detect and deal with error conditions. For instance, if an
attempt is made to open a non-existent root object, an error is generated and
the application is simply aborted. Even though exception handling is assumed
in the ODMG standard, it is not implemented in the O system. The solution
to this problem was the usage of lower level routines from the O» Engine to
test for error conditions.

More flexibility or transparency in some features of the O, ODMG bind-
ing would be useful in the development of the storage manager, for example,
locking, memory management and object identifiers. Explicit locks are not
supported by Oz, but are convenient for more advanced applications and, in
particular, would be useful in the development of RasDaMan.

The second issue concerns automatic memory management. A counter of
references to persistent objects in main memory kept by O, allows automatic
deallocation when an object is no longer referenced. It is difficult for the appli-
cation programmer to have information about whether memory is still allocated
for an object or not. In an application requiring much memory like ours, this
makes implementation more difficult.

Finally, object identifiers (OIDs) are hidden from the user in the current
version of Os. A new implementation of OIDs was therefore required in order
to uniquely identify MDD objects at the client side. It is our opinion that the
support for visible logical OIDs is important to allow some advanced function-
ality, e.g., for interdatabase references. In fact, such functionality is announced
for the new version of O, even though not at the ODMG interface level.

3.3 Index Manager

The Index Manager is responsible for providing all information on access to
tiles of persistent MDD objects. The functionality supported by the Index
Manager includes identification of tiles affected by a spatial access to an MDD
object, calculation of tiles access costs, and determining the most efficient access
sequence to a set of tiles. Whenever classes responsible for query evaluation
require access to part of an object - typically a multidimensional subinterval of
the object’s spatial domain - they send a message to the MDDObject to request
the set of tiles intersecting the area of interest. The MDDObject then calls the



appropriate method from the index member object to identify the tiles affected.
Search is performed using navigation in the persistent index structure and the
tiles of interest are returned to the caller in a collection.

In order to allow different objects to have different index structures, poly-
morphism is used. A super class defines the common interface for MDD objects
indexes which can then have several implementations as subclasses. The ex-
istence of different indexes allows the most appropriate type of index to be
adopted for each object when it is first created. This is of interest due to the
arbitrary tiling: a complex spatial index may be required for an object stored
using nonaligned tiling, whereas the same index structure may lead to bad
storage utilization in another object having a simple aligned tiling. Having a
common indexing interface allows execution of the operations on MDD objects
without having to care about the type of index for each object. In addition,
this implementation allows us to easily add new index techniques to the Index
Manager.

4 Query Processing

Processing of queries begins with the translation of the textual query statement
into an internal tree-based representation. On this data structure, semantic
analysis and optimization take place before an evaluation plan is generated,
which finally is executed at the tile level. Figure 2 illustrates the different data
structures occurring in this process in rounded boxes and operations on them in
angular ones. The following subsections account for the object-oriented design
chosen for the different structures.

Query Statement Internal Representation Evaluation Plan Query Result

Translation Semantic Analysis .
Syntactic Analysis Optimization Evaluation

Data Structure

Figure 2: Query Processing Steps.

4.1 Construction and Optimization of the Query Tree

The internal representation is an operator-based query tree which is a procedu-
ral description of the query based on operator and dataflow statements. Inner
nodes of the tree stand for operators and leaf nodes for data sources which, in
our case, are collections of MDD objects. From a data modeling point of view,
for each operation, be it a relational one, e.g. selection, or an MDD operation,
e.g. projection, a subclass of the node base class exists which inherits function-
ality like management of descendants or knowing about its parent. Therefore,



they all support the same interface and a query tree representing any query
statement can be set up using just the methods of the node base class.

Traversal of the tree is described with the type checking process. A pure
virtual declaration of the type checking method is declared in the common
superclass of all operator classes. This method then is implemented for each
specific operator; it takes care that type checking first is propagated to its
subtree and then the types of its own operands are verified. At the end, a result
is passed to its parent. Usage of a common interface (pure virtual declaration in
a type generalization) and encapsulation of operator specific type checks within
the operators allow for type checking without knowing about the structure of
the operator tree, making extensions of new operators simple and less error-
prone.

Query rewrite is a process in which general-purpose heuristics drive seman-
tics preserving transformations. These transformations need to rearrange or
exchange operator nodes or even whole subtrees. According to the fact that all
operators share the node interface definition, modifications of the tree struc-
ture are mostly carried out with the methods of the node base class. Operator
specific information is just needed to ensure equivalence and whether the type
of a node is to be changed.

The evaluation model abstracts from special operators so that each opera-
tion is seen as a processing unit which consumes data from one or more input
streams, carries out a specific operation, and produces data sent into exactly
one output stream. By combining these processing units in such a way that an
output stream from one unit serves as one input stream to the following unit,
an evaluation tree is built. The structure is similar to the query tree, so the
operator nodes used for internal query representation are also used as elements
in the evaluation tree.

The evaluation strategy of the tree is demand driven and based on the ONC
protocol [10], according to which each processing unit supports the methods
open(), next () and close(). A processing unit (data producer) is first initial-
ized by sending an open() message to the object, then data items are received
by invoking next () as long as no out of data signal is received, and finally the
producer is shut by calling close(). To evaluate a query, the output stream
of the root object is read using the ONC protocol. Invocations of open() and
close() are propagated through the whole tree. If next () of a processing unit
is called, then it is only passed to those input streams which actually provide
data necessary for computation of the next data item.

The protocol is implemented through inheritance of the stream functional-
ity and ad hoc polymorphism. The protocol methods are declared virtual in a
common superclass. The methods can provide default implementations which
propagate open () and close () to the descendants and just pass items from the
input stream to the output stream within the method next (). Each process-
ing unit type can then redefine the implementations according to its specific
functionality and late binding takes care of choosing the right implementation.



4.2 Execution Engine

The Execution Engine is responsible for executing basic operations used in the
operator nodes of the query plan. The functionality of the Execution Engine
is part of the Storage Manager modules where the classes for data sources are
defined. The basic data source is a collection of MDD, on which selection
operators can be applied to retrieve MDD objects. Finally the basic operations
are carried out on tiles, which are retrieved from the MDD objects. In the
following, the implementation of the usual arithmetic operations on numeric
base types or access to elements of a structured base type will be discussed.

While persistent C++ as supported by the base DBMS O, offers the full
power of the object-oriented programming paradigm for specifying operations
on types, we did not use the C++ type system. One reason for this is that
we use the base DBMS only as a storage manager (see Section 3.2); tiles are
stored as arrays of C++ chars. Another reason is that it should be possible to
define new structured base types for cells at runtime without shutting down or
even recompiling the RasDaMan server. With a strongly typed and compiled
language like C++ new types can be used only after recompilation.

To support base types other than char, the RasDaMan DBMS has to pro-
vide its own internal type system. We implemented our type system in an
object-oriented way, supporting the ODMG-93 primitives like ULong or Bool
and structures. Our type system implementation uses metaclasses as in dy-
namic object oriented languages like Smalltalk [9] or CLOS [12]. For each base
type, a C++ object is created which is an instance of a metaclass. For simple
base types, just one instance of the corresponding metaclass exists. For struc-
tured base types, one instance of the corresponding metaclass is created for
each user defined structured base type, which stores all information needed for
the structured type (e.g., name and type of its elements) in member variables.

Each metaclass knows how to carry out operations on cells of its type us-
ing a group of chars as operands. These operations are returned as function
objects if needed. Function objects or functors [6] overload the function call
operator operator () and can be used to implement higher order functions, i.e.
functions returning functions as a result, like provided in LISP [17]. Whenever
the executor carries out an operation on a tile, it requests a function object for
the operation from the metaclass. This has to be done only once for each tile,
the function object is then applied to each cell of the tile.

Given these function objects, the executor calls a method of the tile to carry
out an operation on all of its cells or a part specified as a multidimensional
interval. It is the responsibility of the executor to break down MDD operations
on tiles, specifying, for each tile, the areas which are affected when carrying out
an operation involving two MDDs. The schema information, i.e. all instances of
metaclasses representing the simple base types supported by the system and the
user defined structured base types currently in use, is stored in the RasDaMan
DBMS. C++ classes are used to do this which are made persistent with Os.



5 Conclusions

Compared to existing DBMSs, RasDaMan offers several innovative features re-
garding MDD management. An MDD object is modeled as an array with spec-
ified base type and multidimensional spatial domain. The conceptual MDD
model and its ODMG conformant binding provide seamless integration of per-
sistent MDD objects in C++ applications. A query language allows execution
of complex, computation intensive operations on the RasDaMan server. A spe-
cialized storage structure for large MDD objects is adopted which is composed
of multidimensional tiles and spatial indexes on the tiles. Query evaluation
is performed at tile-level. Inheritance and ad hoc polymorphism are used to
implement the query tree evaluation protocol. Operations on tiles are executed
using function objects, which allow support for the RasDaMan provided MDD
operations also on MDD objects with user defined cell types.

Although the first version of the system does not fully exploit the optimiza-
tion potential, initial performance tests showed that both client-server data
transmission and storage structure have high impact on the execution perfor-
mance of MDD operations. A first test case assessed the influence of data trans-
mission on the overall performance. The same MDD operation was performed
both on the client and on the server running in two hosts located in a local net-
work, executing a simple trimming operation on the images of a collection. The
collection had four 2.5 megabytes (MB) satellite images corresponding to the
same geographical area and the trimmed subimages had 750 kilobytes (KB)
each. A performance gain higher than two was obtained for this case. A second
test case showed the impact of the tiling scheme on the speed of execution of
operations on MDD. In this case, a 40 MB 3-D object, consisting of tomogram
slices, was stored using two different tiling schemes: cubes (100 KB each) and
slices of thickness one along the x-direction. The time required for executing
a z-projection on the sliced data was five times that required for the cubed
object. Such performance gains can only be achieved if internal support for
MDD is provided by the DBMS at the server side.

The implementation of basic storage management using the C++ ODMG
binding of O, allowed a design of the database engine where the main entities
of the system like MDD objects, collections of MDD objects, and tiles, are mod-
eled directly as classes starting from the storage level up to the communication
module. The architecture of the system was designed to keep the interface
between modules small. This is particularly important in the Base DBMS In-
terface layer, in order to allow easy porting of the RasDaMan system to another
base storage system, and in the communication module. In this later case, the
efficacy of the design was already proven when a necessary re-implementation
of the communication layer using a different RPC system was done with little
effort. In the future, we intend to explore more advanced optimization tech-
niques and support new data types. Implementation of further operations such
as affine transformations (e.g., scaling and rotation) is also planned.
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