
Angelica Garcia Gutierrez, Peter Baumann

Modeling Fundamental Geo-Raster
Operations with Array Algebra

Technical Report No. 7
June 2007

School of Engineering and Science

Modeling Fundamental Geo-Raster
Operations with Array Algebra
Towards the improvement of query response times in Raster
Image Databases

Angelica Garcia Gutierrez
Peter Baumann

School of Engineering and Science
Jacobs University Bremen gGmbH
Campus Ring 1
28759 Bremen
Germany
E-Mail: a.agarciagutierrez@jacobs-university.de, p.baumann@jacobs-university.de
http://www.jacobs-university.de/

Summary

Raster image data is the most voluminous data type encountered in remote sensing
applications. With its multidimensional, gridded nature, the raster data structure
is found to be very similar to the structures treated in OLAP (Online Analytical
Processing); further, striking similarities can be observed in the mathematical
modeling of operations in both domains. However, while in both remote sensing
/ imaging and OLAP there exists a host of research on analysis and extraction
techniques, there is no cross-fertilization to the best of our knowledge.

One particular technique known in OLAP for speeding up complex database
queries on very large datacubes is pre-aggregation, i.e., materialization of earlier
results for subsequent use in same or similar requests. We feel that pre-aggregation
can be advantageously transposed into the remote sensing / imaging area to speed
up raster aggregation operations such as image scaling.

In this report we present fundamental operations on raster image data, model
them using an algebraic framework, and classify them based on their structural
properties. We then identify a set of operations requiring aggregation (summa-
rization) of data. These operations are the potential candidates for support by
OLAP pre-aggregation algorithms, which is our next research step.

mailto:a.garciagutierrez@jacobs-university.de
 mailto:p.baumann@jacobs-university.de
http://www.jacobs-university.de/

Contents

1 Introduction 1

2 Choice of Methodology and Related Work 2
2.1 Geo-Raster Operations . 2
2.2 Algebraic Frameworks . 3

3 Array Algebra 4
3.1 Overview . 4
3.2 N-Dimensional Interval Arithmetics 5
3.3 The Core Algebra . 6
3.4 Derived Operators . 9

3.4.1 Trimming and Section . 9
3.4.2 Induced Operations . 10

4 Modeling Operations 10
4.1 Mathematical operators . 10

4.1.1 Reclassification . 12
4.1.2 Proximity . 15
4.1.3 Overlay . 15

4.2 Aggregate operations . 16
4.2.1 Add . 16
4.2.2 Count . 17
4.2.3 Average . 17
4.2.4 Maximum . 19
4.2.5 Minimum . 19
4.2.6 Histogram . 20
4.2.7 Diversity . 20
4.2.8 Majority/Minority . 21

4.3 Statistical operations . 22
4.3.1 Variance . 23
4.3.2 Standard Deviation . 23
4.3.3 Median . 23
4.3.4 Top-k . 24
4.3.5 Edge Detection . 26

4.4 Affine Transformations . 28
4.4.1 Translation . 28
4.4.2 Rotation . 29
4.4.3 Scaling . 30

4.5 Slicing . 31
4.6 Terrain Analysis . 32

4.6.1 Slope/Aspect . 32
4.6.2 Local drain directions (ldd) 33

5 A Raster Operations Classification Scheme 34

6 Summary and Future Work 34

1 Introduction

Satellites designed to document our planet over time provide valuable information
about the impact of human activity, natural disasters and climate change. Typi-
cally, remote sensing applications form massive amounts of raster image data1. For
example, the Landsat satellite program has accumulated over 1.7 million scenes
and over 630 terabytes of data, at a growing rate of 320 gigabytes every day.
Characteristic for the database technology supporting such data is the capabil-
ity of dealing with huge amounts of multidimensional datasets. The raster data
model maps an abstraction of the real world in a n-dimensional array of cells.
The n-array is organized by continuous, evenly spaced rows and columns. Each
cell is coded with an attribute that represents a data parameter e.g., temperature,
height [1]. Similar data structures are found in other fields, particularly in business
applications. For example, the two largest databases of Amazon combine together
around of 42 terabytes of multidimensional data. Several approaches for intelligent
analysis of the data are available, tried and tested. Online Analytical Processing
(OLAP) and Data Mining represent two of the most important approaches.

As data sets grow larger, queries might need to operate over large amounts of
data. Therefore, it is more efficient to extract general characterizations, that is,
aggregate information of large subsets of the data. A typical solution is to pre-
compute (materialize) the whole or parts of each query and save the results in a
materialized query table. By querying the materialized query table instead of com-
puting the results from the underlying base tables a database system can perform
query processing more efficiently. However, full materialization may lead to an
explosive growth of both storage and computation costs. To overcome this issue,
substantial research as been conducted on the selection of views under different
constraints [2, 3, 4, 5, 6]. But the problem of view selection is tightly correlated
with another aspect, query rewriting, where we have also observed strong inter-
est [7, 8, 9, 10, 11]. Query rewriting consists in reformulating the query in terms
of the aggregates and then evaluating the rewriting over the aggregate extensions.
The decision for answering a query from base or materialized tables lies on the
estimated cost of answering the original and rewritten queries.

On the other hand, current research on raster databases encompass several
aspects. In the area of data modeling, the focus is set on the construction of
data models for spatial data changing over time, e.g., [12, 13]. Research is also
conducted on the development of algebraic frameworks to improve spatial analysis
capabilities, e.g., [14, 15, 16]. Another critical aspect is query processing, where
research has focus on the use of parallel processing and indexing mechanisms
to speed up access time of data stored in tertiary systems [17]. Some works
have applied OLAP technology to support spatial data in GIS databases [18, 19],
but they have focus on a particular data structure: vector data and to the best

1The terms field and continuous data are also used for some authors. In this report raster
data refers to raster image data.

1

of our knowledge no works have addressed the issue of applying materialization
techniques for aggregate queries with raster image data.

We consider the problem of selecting aggregates to minimize query response
time for aggregate queries and the implementation of rewritings in raster image
databases. In solving this problem, the first issue we need to address is what
types of aggregates should be considered. Although there are several surveys
describing GIS operations, most of them are introductory or lack mathematical
foundations. In addition, extant classification schemes for GIS operations are
not comprehensive: they either focus on a particular data structure or otherwise
serve to a specific application. In this report we present a set of fundamental
operations with geo-raster data and model their computation using an algebraic
framework. The selection of these operations is derived from a thorough review of
GIS classification schemes [1, 20, 21, 22, 23, 24, 25, 26, 27], and of international
standards/best practices like Open GIS Consortium(OGC) [28]. We consider that
such algebraic characterization is crucial for the identification of aggregates to be
materialized and the application of rewriting algorithms.

The report is organized as follows. Section 2 motivates the choice of method-
ology and introduces the Array Algebra framework subsequently used. Section 3
describes the modeling of fundamental geo-raster operations. In Section 4 we iden-
tify potential operations to be treated with pre-aggregation algorithms. Finally,
in Section 5 we present a brief summary and future work.

2 Choice of Methodology and Related Work

2.1 Geo-Raster Operations

In [23] a set of GIS operations is presented. By analyzing current GIS user in-
terfaces and omitting all those operations that are due to either the development
of a particular software package or are a result of the data model employed, the
author derived a list of 20 universal GIS operations. A classification of GIS func-
tions for natural resource management is presented in [29]. Such classification was
adapted from [25], making clear distinction between vector and raster operations.
In [24], raster operations are classified into a series of recognized domains that are
common to many GIS. The description of raster operations in all these classifica-
tion schemes is purely conceptual without any mathematical foundations. A more
comprehensive description of raster operations is presented in [20], however, the
computation of the examples does not follow an uniform framework.

Our classification scheme is derived from the above work, and is complemented
by modeling the operations using an uniform algebraic framework.

2

2.2 Algebraic Frameworks

For a rigid comparison and classification, raster operations have to be described
uniformly and by means of a sound mathematical framework. An additional re-
quirement arising from our research context is that the model should embed itself
naturally in a database environment, allowing not only to derive query languages,
but also to describe query optimization and efficient storage management.

Most theoretical work on array operations for databases has been accomplished
in the field of OLAP. However, all these mechanisms have never been applied
to the geo domain, and hence do not provide an appropriate basis for our geo
raster modeling. Some work exists, though, to model raster image operations
on an abstract, yet fine-grain level. We concentrate on models that allow multi-
dimensional arrays, as opposed to 2-D only.

Mennis et al [30] introduce 3-D map algebra, which extends classical map
algebra. The term ”map algebra” was first used in the late 1970s [31] and has since
been used in loose reference to a set of conventions, capabilities, and analytical
techniques that have been widely adopted for raster-based geographic information
systems (GIS) [32]. Map algebra has been incorporated in many GIS and remote
sensing image processing packages. A drawback is that 4-D imagery and beyond,
something definitely within the scope of our research, is not supported to the best
of our knowledge. Further, map algebra is not aligned with the needs of databases,
such as a framework for operator optimization.

In [33] nested relational calculus is extended with multidimensional arrays,
obtaining a model called NCRA. Although NCRA has been prototypically im-
plemented using a derivative, AQL, it is not easy to see how real-life geo raster
operations can be phrased adequately.

The rasdaman Array Algebra [34, 35] has been developed to obtain a com-
prehensive formal framework for studying query language, query optimization,
and storage management in array database systems. Array Algebra is inspired
by AFATL Image Algebra [36], a very general, rigorously formalized framework
capable of describing a large class of imaging operations. As [35] outlines, Ar-
ray Algebra is able to express both imaging and OLAP operations. Further, the
rasdaman system which implements most of Array Algebra has proven feasibility
in many practical applications. Particularly attractive from a modeling viewpoint
is that Array Algebra relies on only three basic operators, which greatly supports
the operation morphology classification task.

An algebra-based Array Manipulation Language, AML, is introduced in [37].
Two operators serve to subsample and interleave, resp., arrays based on bit se-
quences governing cell selection. The third operator, APPLY, corresponds to
induce operations modulo the bit pattern for cell selection. Bit patterns are mod-
eled in Array Algebra through 1-D bit arrays executing the same control function.
AML is more restricted than Array Algebra in that such control arrays cannot
contain arbitrary values (e.g., weights), and moreover are constrained to 1-D. Fur-
ther, aggregations cannot be modeled as comprehensively as in Array Algebra.

3

Finally, some important operations are modeled as black boxes, which does not
support very well classification work.

In summary, most array frameworks nowadays are geared towards OLAP tasks,
without regarding spatio-temporal array application fields. Conversely, frame-
works such as AML aiming at imaging do not consider OLAP. Sometimes array
iteration or aggregation retracts to user-defined functions which make the algo-
rithms unavailable to our classification. All operations such as aggregation and
spatial join found in these approaches are expressible in Array Algebra, too, ex-
cept that dimension hierarchies usually are supported by convenient mechanisms
in OLAP, a feature not foreseen (yet expressible) in core Array Algebra.

As additionally the rasdaman vehicle will form the implementation platform
for our subsequent research work, Array Algebra is a natural candidate for the
classification work described in this report. In the next Section we give a brief
introduction to Array Algebra.

3 Array Algebra

The formal framework for describing arrays and their operations, which is pre-
sented in the sequel, is called Array Algebra. Array Algebra is a domain-independent
algebra for an abstract treatment of operations on multi-dimensional arrays. Fol-
lowing Furtado [38] we call n-dimensional arrays multi-dimensional discrete data
(MDD).

Essentially, the algebra consists of only three operations: an array constructor,
a generalized aggregation, and a multidimensional sorter. This core model does
not rely on recursion and is safe in evaluation, yet it allows to express a wide
range of imaging, statistical, and OLAP operations. Tentatively no recursion has
been included, and any array expression can be computed in finite time if each
of the base operations does so. On the other hand, Array Algebra is a complete
framework in that it does not refer to ”black box” user-defined functions external
to the apparatus; all array-related functionality is resolved by the framework,
relying solely on the operations coming with the cell type’s algebraic structure.
Array Algebra has been presented in [34] and, more completely, in [35].

Array Algebra forms the conceptual basis of a domain-independent array DBMS,
rasdaman [39], which offers an SQL-based query language with extensive alge-
braic query and storage optimization. The rasdaman system is in international
operational use in public administration, industry, and research.

3.1 Overview

Arrays are represented in Array Algebra as functions mapping n-dimensional
points (i.e., vectors) from discrete Euclidean space to values. This is common
in imaging for a long time - see, e.g., [40] - and has been transposed to database

4

terminology in [41, 34]. To smoothly embed Array Algebra into relational al-
gebra we use a set-oriented basis, i.e., we allow sets over arrays and other data.
Operations on such arrays have to be second order to describe functions which
simultaneously apply some other function in a cell-wise manner. In practice, sec-
ond order functionals are needed, on the one hand, to allow for binding variables
to points for iterating coordinate sets and, on the other hand, to aggregate arrays
(or part thereof) into scalar values. The latter operation corresponds very much
to relational set aggregators; however, instead of providing a limited list of aggre-
gation operations as in the relational algebra, a general constructor is introduced
by Array Algebra which is parametrized with the underlying base operation.
Array Algebra is minimal in the sense that no subset of its operations exhibits the
same expressive power. It is also closed in application: any expression is either of a
scalar or an array type. Finally, Array Algebra does not rely on any external array
handling functionality (”user-defined functions”) aside of the operations coming
with the algebraic structure of the cell type. We observe that in many cases op-
erations can be formulated without explicitly referring to the array dimension,
allowing to develop parametrized cross-dimensional, domain-independent query
libraries which go well beyond the capabilities of object-relational ADTs [42].

3.2 N-Dimensional Interval Arithmetics

We first introduce some notation for n-dimensional integer interval arithmetics.
We call the coordinate set of an array its spatial domain. Informally, a spatial
domain is defined as a set of n-dimensional points (i.e., algebraic vectors) in Eu-
clidean space forming a finite hypercube with boundaries parallel to the coordinate
system axes.
We assume common vector notation. For a natural number d > 0, we write
x = (x1, ..., xd) ∈ X ⊆ Zd for some d-dimensional vector x, x + y for vector ad-
dition, etc. The point set forming the geometric extent of an array is called its
spatial domain. A spatial domain X of dimension d spanned by l and h is defined
as:

X = [l1 : h1, ..., ld : hd]

:=
d

X
i=1
{xi : li ≤ xi ≤ hi} if ∀1 ≤ i ≤ d : li ≤ hi

:= {} otherwise.

Functions low, high P(Zd) → Zd defined as low(X)=l and high(X)=h for some
spatial domain X given as before denote the bounding vectors. We will abbrevi-
ate lowi(X) = li and highi(X) = hi for the ith component. Function dim(X)=d
denotes the dimension of spatial domain X.
On such hypercubes, point set operations can be defined in a straightforward

5

way. We admit only those operations which respect closure, such as intersect and
union*, whereby the asterisk ”*” denotes the hull operation applied to the result:

intersect∗(X, Y) :=

[max(low1(X), low1(Y)) : min(hi1(X), hi1(Y)), ...,
max(lowd(X), lowd(Y)) : min(hid(X), hid(Y))]

union∗(X, Y) :=

[min(low1(X), low1(Y)) : max(hi1(X), hi1(Y)), ...,
min(lowd(X), lowd(Y)) : max(hid(X), hid(Y))]

As can be shown easily, these operations are commutative, associative, and
distributive. The shift operator allows to change a spatial domain’s position ac-
cording to a translation vector t:

shiftt(X) := x + t : x ∈ X

Let X be spanned by d -dimensional vectors l and h. For some integer i with
1 ≤ i ≤ d and a one-D integer interval I=[m:n] with li ≤ m ≤ n ≤ hi, the trim of
X to I in dimension d is defined as

τi,I(X) := {x ∈ X : m ≤ xi ≤ n} = [lI : hI , ...,m : n, ..., ld : hd]

Intuitively speaking, trimming slices off those parts of an array which are lower
than m and higher than n in the dimension indicated; the dimension is unchanged.
As opposed to this, a section cuts out a hyperplane with dimension reduced by 1.
Formally, for some X as above, an integer p with 1 ≤ p ≤ d, the section of X at
position p in dimension i is given by:

σi,p(X) := {x ∈ Zd−1 : x = (x1, ..., xi−1, xi+1, ..., xd), (x1, ..., xi−1, p, xi+1, ..., xd) ∈ X}
= [l1 : h1, ..., li−1 : hi−1, li+1 : hi+1, ..., ld : hd]

Trimming is commutative and associative, whereas a section changes dimension
numbering and, therefore, has neither of these properties.

3.3 The Core Algebra

Let X ⊆ Zd be a spatial domain and F a value set (i.e., a homogeneous alge-
bra). Then, an F-valued d-dimensional array over spatial domain X - or short:
(multidimensional) array - is defined as

a : X → F (i.e., a ∈ FX),

a = {(x, a(x)) : x ∈ X, a(x) ∈ F}

6

The array elements a(x) are referred to as cells. For notational convenience,
we also allow to enumerate the components of a cell coordinate vector, e.g.,
a(x1, x2, x3). Auxiliary function sdom(a) denotes the spatial domain of some array
a; further, we lift function dim to arrays. Let a : X → F be an array, then sdom
and dim are defined as:

sdom(a) := X

dim(a) := dim(sdom(a))

The ith dimension range of an array’s spatial domain we will denote by sdomi(a).

Example: For a 1024× 768 image a with lower left corner in the origin of the
coordinate system, sdom(a)=[0:1023,0:767], dim(a)=2.

The first functional we introduce is the array constructor MARRAY. It allows
to define arrays by indicating a spatial domain and an expression which is evalu-
ated for each cell position of the spatial domain. An iteration variable bound to a
spatial domain is available in the cell expression so that a cell’s value can depend
on its position. Let X be a spatial domain, F a value set, and v a free identifier.
Let further ev be an expression with result type F containing zero or more free
occurrences of v as placeholder(s) for an expression with result type X. Then, an
array over spatial domain X with base type F is constructed through:

MARRAYX,v (ev) = {(x, a(x)) : a(x) = ex, x ∈ X}

Example: Consider scaling of a grey scale image a with sdom(a) = [1:m,1:n]
by a factor s ∈ R. We assume component-wise scalar division and rounding on
vectors and write:

MARRAY[1:m∗s,1:n∗s],v(a(round(v/s)))

For 0 < s < 1 the image is sized down; the interpolation method then corre-
sponds to ”nearest neighbor”, the simplest interpolation technique used in imag-
ing.

The operation which in some sense is the dual to the MARRAY constructor
is the condenser, COND. It takes the values of an array’s cells and combines
them through the operation provided, thereby obtaining a scalar value. Again,
an iterator variable is bound to a spatial domain to address cell values in the
condensing expression. Let o be a commutative and associative operation with
signature o : F, F → F , let further v be a free identifier, X = x1, ..., xn|xi ∈ Zd

a spatial domain consisting of n points, and ea,v an expression of result type F
containing occurrences of an array a and identifier v. Then, the condense of a by
o is defined as:

7

CONDo,X,v(ea,v) := O
x∈X

ea,x = ea,x1o...oea,xn

Examples: Let a be the image as defined in the above example. The sum
over all pixel intensities in a is given by:

COND+,sdom(a),v(a(v)) =
∑

x∈[1:m,1:n]

a[x]/(m ∗ n)

We abbreviate the above condense expression as avgcells(a). Obviously the
aggregate operations known from the SQL database language can be introduced
naturally, such as maximum and average:

max cells(a) := CONDmax,sdom(a),v(a(v))

avg cells(a) := COND+,sdom(a),v(a(v))/|sdom(a)| =
∑

x∈[1:m,1:n]

a[x]/(m ∗ n)

For color table computation needed, e.g., for generation of a GIF image en-
coding, one has to know the set of all values occurring in array a. The condenser
allows to derive this set by performing the union of all cell values:

COND∪,sdom(a),v({a(v)})

The third and last operator is an array sorter which proceeds along a selected
dimension to reorder the corresponding hyperslices. Function sorts rearranges a
given array along a specified dimension s without changing its value set or spatial
domain. To this end, an order-generating function is provided which associates a
”sequence position” to each (d-1)-dimensional hyperslice. Let a be a d-dimensional
array, i ∈ N with 1 ≤ i ≤ d a dimension number, and fs,a : sdoms(a) → N a
total function which, for a given array a, inspects a in the sorting dimension s
and delivers an ordering measure for each hyperslice. Further, let perm(x, y) be
a predicate indicating that vector x is a permutation of vector y (and vice versa).

Then, the two sorters sortasc
s,f and sortdesc

s,f for ascending and descending order,
resp., are given through:

sortasc
s,f (a) :={((y), b((y)) : (y) ∈ sdoms(a),

∀p, q ∈ sdoms(a) : p < q =⇒ fs,b(p) ≤ fs,b(q),

perm(((b(x1, ..., xs−1, sdoms(a).lo, xs+1, .., xd), ...,

b(x1, ..., xs−1, sdoms(a).hi, xs+1, .., xd)),

((a(x1, ..., xs−1, sdoms(a).lo, xs+1, .., xd), ...,

((a(x1, ..., xs−1, sdoms(a).hi, xs+1, .., xd)))

8

sortdesc
s,f (a) :={((y), b((y)) : (y) ∈ sdoms(a),

∀p, q ∈ sdoms(a) : p < q =⇒ fs,b(p) ≥ fs,b(q),

perm(((b(x1, ..., xs−1, sdoms(a).lo, xs+1, .., xd), ...,

b(x1, ..., xs−1, sdoms(a).hi, xs+1, .., xd)),

((a(x1, ..., xs−1, sdoms(a).lo, xs+1, .., xd), ...,

((a(x1, ..., xs−1, sdoms(a).hi, xs+1, .., xd)))

The resulting array has the same number of dimensions, spatial domain, and
base type as the input array. Note that function fs,a has all degrees of freedom to
assess any of a’s cell values for determining the measure value of a hyperslice on
hand - it can be a particular cell value in the current hyperslice, the average of
all hyperslice values, or even neighbored slices (e.g., for relative increases of sales
values.

Example: Let a be a 1-D array with spatial domain D=[1:d] where cell values
denote sales figures over time. Let further sorting function fs,a be given as fs,a(p) =
a[p]. Then, the following expression delivers the ranked sales:

sort0,fdesc(a)

As an aside we note that the sort operator includes the relational group by.
We omit further details, referring the interested reader to [35].

As we will demonstrate below, slice and roll-up operations arising from array
access based on dimension hierarchies can be expressed, although - not very com-
fortably - by indicating the cell coordinates pertaining to a particular member
set. Concepts for an intuitive, symbolic treatment of dimension hierarchies are
currently under investigation.

3.4 Derived Operators

Several useful operations can be derived from the above ones. We present a se-
lection of those which have turned out particularly important in practical appli-
cations.

3.4.1 Trimming and Section

The previously introduced spatial domain operations trimming and section give
rise to corresponding array operations. For some array a, an 1-D interval I, and
two natural numbers 1 ≤ t ≤ dim(a) and p ∈ sdomd(a) they are defined as:

TRIMt,I(a) := MARRAYX,v(a(v)), forX = τt,I(sdom(a))andd < dim(a)
SECTt,p(a) := MARRAYX,v(a(v)), forX = σt,p(sdom(a))andd < dim(a)

9

3.4.2 Induced Operations

A basic set of operations are those induced by the algebra of the underlying value
sets. If a,b ∈ FX are arrays and o is a binary operation on F , then o induces a
binary operation on FX denoted by oind such that, if c = aoindb, then c ∈ FX and,
for all x ∈ X, c(x) = a(x)ob(x). Along this line, we also allow to induce unary
operations. Notably, these operations are not axiomatic:

INDf (a) = MARRAYX,v(f(a(v))) for X = sdom(a)

INDg(a, b) = MARRAYX,v(g(a(v), b(v))) for X = sdom(a) = sdom(b)

Algebraic properties of F transform to corresponding structures on the set FX

of induced functions. If F is a field, then FX is a vector space; for a ring F , FX

is a module for suitably defined spatial domains.
Examples: Let a be a grayscale image over spatial domain X. Increasing intensity
by 5 can be accomplished through induction on unary ”+5”:

IND+5(a) = {(x, b(x)) : b(x) = a(x) + 5, x ∈ X}

Consider now another grayscale image b over the same spatial domain X. Then,
pixel addition can be induced to obtain image addition:

IND+(a, b) = {(x, c(x)) : c(x) = a(x) + b(x), x ∈ X}

When used in a query, binary induction obviously implies a spatial join.
Let now c be a color image where the cell type is a three-integer record of red,
green, and blue intensity, resp. Such a pixel-interleaved image is transformed
into a channel-interleaved representation, i.e., three separate color planes, through
induction on the record access operator ”.”, obtaining:
< c.red, c.green, c.blue >
The above type of induction is also referred to as point wise induction, as points
pairwise match for each application of the base function.

4 Modeling Operations

In this Section we present the modeling of fundamental geo-raster operations based
on the algebraic framework Array Algebra. Several example queries illustrate the
use of the operations under discussion. Note that we are using the terms array,
multidimensional data structure (MDD) and raster image interchangeably.

4.1 Mathematical operators

The following groups of mathematical operators are distinguished: arithmetic,
trigonometric, boolean and relational. They operate at cell level and can be applied
in a single or multiple MDDs of numerical type and identical spatial domain. The

10

basic arithmetic operators include addition (+), subtraction (-), multiplication
(*), and division (/). Trigonometric functions perform trigonometric calculations
on the values in an input raster: sqrt, log, ln, absolute, sine (sin), cosine (cos),
tangent (tan) or their inverse (arcsin, arccos, arctan). Consider, for example, the
following query using an arithmetic function:

Query 4.1. Extract the green component of a RGB raster image A and decrease
the contrast by a factor of 2.

With array algebra, the query can be computed as follows:

MARRAYsdom(A),i(A.green[i]/2)

Results are shown in Fig. 1.

(a) Original RGB image (b) Green component (c) Output raster

Figure 1: Usage of arithmetic operators for decreasing the contrast by a factor of
2 in the green channel of the original RGB image.

A raster image, or part of it, can be manipulated using the standard rules of
Boolean algebra which are integrated in database languages such or derived from
SQL [20]. Boolean algebra uses logical operators such as and, or, not, and xor
to determine whether a particular condition is true or false. These operators are
often combined with relational operators: equal (=), not equal (6=), less than (<),
less or equal than (≤), greater than (>), and greater or equal than (≥). Consider,
for example, the following queries:

Query 4.2. Given a NRG raster image A, highlight the cells with ”sufficient near-
infrared” values.

11

This query can be answered by imposing a lower bound on the infrared inten-
sity, and upper bounds in the green and blue intensities. The resulting boolean
array is multiplied by the original image A to show the original cell where an
infrared value prevails and black otherwise.

MARRAYsdom(A),i (A[i] ∗ ((A[i].nir ≥ 130) and

(A[i].green ≤ 110) and (A[i].blue ≤ 140)))

Results are shown in Fig. 2.

(a) Original nrg raster (b) Output raster

Figure 2: Usage of relational operators in highlighting infrared areas of an NRG
image.

Query 4.3. Compare the cell values of two 8-bit gray raster images A and B.
Create a new MDD where each cell value takes the value of 255 (white pixel) when
the cell values of A and B are identical.

The algebraic formulation is as follows:

MARRAYsdom(A),i((A[i] = B[i]) ∗ 255)

Results are shown in Fig. 3.

4.1.1 Reclassification

Reclassification is a generalization technique used to re-assign cell values in clas-
sified MDDs. For illustration consider the query below where reclassification is
based on a land suitability study. Typically, the classifications are based on inter-
national standards like the one proposed by the United Nations (UNO) and the
Food and Agriculture (FAO) Organizations (Table 1).

12

(a) Grey 8-bit raster A (b) Grey 8-bit raster B (c) Output image.

Figure 3: Usage of relational and arithmetic operators in identifying areas where
cell values of A and B are equal.

Table 1: UNO and FAO suitability classifications 2

Classification Description
S1 Highly suitable
S2 Moderately suitable
S3 Marginally suitable
NS Not suitable

Query 4.4. Given a 8-bit gray image A, map each cell value with its corresponding
suitability class shown in Table 2, and decrease the contrast of the image according
to the decreasing factor.

The query can be answered as follows:

MARRAYsdom(A),g(((A[g] > 180) ∗ A[g]/2) +

(((A[g] ≥ 130)and(A[g] < 180)) ∗ A[g]/3) +

(((A[g] ≥ 80)and(A[g] < 130)) ∗ A[g]/4) +

((A[g] < 80) ∗ A[g]/5))

Results are shown in Fig. 4.

2Classification taken from http://www.fao.org/docrep/X5310E/X5310E00.htm

13

Table 2: Capability indexes for the different capability classes

Capability index Class Suitability class decrease factor
>180 I S1 2
130-180 II S2 3
80-130 III S3 4
< 80 IV NS 5

(a) Original raster (b) Output raster

Figure 4: Use of relational and arithmetic operations in reclassification.

14

4.1.2 Proximity

The proximity operation creates a new MDD where each cell value contains the
distance to a specified reference point. As an example consider the following query:

Query 4.5. Estimate the proximity of each cell of the raster image shown in
Fig. 4(a) to the reference cell located in [30,5].

This query can be formulated as:

MARRAYsdom(A),(g,h)(|g − 30|+ |h− 5|)

Results are shown in Fig. 5.

Figure 5: Usage of relational and arithmetic operators in computing a proximity
operation.

4.1.3 Overlay

The overlay operation refers to the process of stacking two or more identical geo-
referenced MDDs on top of each other so that each position in the area covered
can be analyzed in terms of these data. The overlay operation can be solved by
using arithmetic and logical operators. For example, consider the following query:

Query 4.6. Given two 8-bit gray raster images A and B with identical spatial
domain perform an overlay operation. For each cell value of the new array select
the maximum cell value between A and B.

The computation of this query can be formulated as:

MARRAYsdom(A),g(((A[g] > B[g]) ∗ A[g]) + ((A[g] ≤ B[g]) ∗B[g]))

Results are shown in Fig. 6.

As an alternative approach, a different condition can be tested to compute the
overlay operation:

15

(a) 8-bit gray raster A (b) 8-bit gray raster B (c) Output raster

Figure 6: Usage of relational and arithmetic operators in computing an overlay
operation according to Query. 4.6.

Query 4.7. Perform an overlay operation between the MDDs A and B. Wherever
the cell value of B is non-zero, the result cell value in the new array will be this
value. Otherwise, the cell value of A must be taken.

The query can be answered as follows:

MARRAYsdom(A),g(((B[g] > 0) ∗B[g]) + ((B[g] ≤ 0) ∗ A[g]))

Results are shown in Fig. 7.

4.2 Aggregate operations

An aggregate function takes a collection of cells and returns a single value that
summarizes the information contained in the set of cells. The SQL standard
provides a variety of aggregate functions. SQL-92 includes count, sum, average,
min, and max. SQL-1999 adds every, some and any. The SQL-OLAP addendum
to the SQL-1999 standard includes 18 additional aggregates. The remaining of this
Section discusses the usage of aggregate functions in the processing of geo-raster
operations.

4.2.1 Add

The add operation can be applied in entire rasters (or part of the rasters). The
operation sums up the content of the cells and returns the total as a scalar value.
It can be applied in two or more rasters with identical spatial domain returning a

16

(a) Grey 8-bit raster A (b) Grey 8-bit raster B (c) Output raster

Figure 7: Usage of relational and arithmetic operators in computing an overlay
operation according to Query. 4.7.

new raster of same spatial domain. In this case, the cells of the new raster contain
the sum of the inputs computed on a cell-by-cell basis. As an example of the add
operation in a single raster consider the following query:

Query 4.8. Return the sum of all cell values of the MDD shown in Fig. 8(a).

add cells(A) = COND+,sdom(A),i(A[i])

Results are shown in Fig. 8.

4.2.2 Count

The count operation returns the number of cells that fulfill a boolean condition
applied in a raster. For example, consider the following query:

Query 4.9. Return the number of cells of a MDD A of boolean type, containing
true value in the green channel.

count cells(A) = COND+,sdom(A),i(A[i].green = 1)

4.2.3 Average

The average function returns a scalar value representing the mean of all values
contained in a raster. As an example consider the following query:

Query 4.10. Return the average of the cell values in each channel of the NRG
image shown in Fig. 8(a).

17

(a) Original NRG raster

(b) Output raster

Figure 8: Usage of the add aggregate function in estimating the total sum of cell
values in a MDD.

18

Let sum cells(A) be a function calculated as shown in Section 4.2.1, and
card(sdom(A)) a function returning the cardinality of A, i.e., the number of cells
covered by A’s spatial domain. Then, the average of A is calculated as follows:

avg cells(A) =
sum cells(A)

card(sdom(A))

Results are shown in Fig. 9.

Figure 9: Usage of the average aggregate function

4.2.4 Maximum

The maximum operation returns the largest cell value contained in a raster of
numerical type. As an example, consider the following query:

Query 4.11. Return the maximum cell value of all cells contained in the NRG
raster image shown in Fig. 8(a).

max cells(A) = CONDmax,sdom(A),i(A[i])

Results are shown in Fig. 10.

4.2.5 Minimum

The minimum operation returns the smallest cell value contained in a raster of
numerical type. As an example, consider the following query:

Query 4.12. Return the smallest element of all cell values in the NRG raster
image shown in Fig. 8(a).

min cells(A) = CONDmin,sdom(A),i(A[i])

Results are shown in Fig. 11.

19

Figure 10: Usage of the maximum aggregate function

Figure 11: Usage of the minimum aggregate function

4.2.6 Histogram

A histogram provides information about the number of times a value occurs across
a range of possible values. For a 8-bit MDD up to 255 different values are possible.
As an example consider the following query:

Query 4.13. Calculate the histogram for a two-dimensional MDD, 8-bit resolution
pixel integer array A.

The query can be computed as follows:

MARRAYsdom(A),g(count cells(A = g[0])) (1)

Results are shown in Fig. 12.

4.2.7 Diversity

The diversity operation returns the different classifications existing in a raster
MDD. For example, consider the following query:

Query 4.14. Given the classifications existing in a 8-bit gray raster image, return
true (1) for those classes whose total number of cells are greater than 0.

20

Figure 12: Usage of the count aggregate function for the computation of the
histogram.

For the computation of this operation we can make use of the histogram cal-
culated in Query. 4.2.6. Let B be a 1-D array containing the histogram values:

B = MARRAYsdom(A),g(COND+,sdom(A),i(A[i] = g))

then, C is the array containing true values for the elements of the histogram that
are greater than 0:

C = MARRAYsdom(B),i(B[i] > 0)

Results are shown in Fig. 13.

Figure 13: Usage of the add aggregate function for the computation of diversity.

4.2.8 Majority/Minority

In a classified MDD, the majority operation finds the class value with the larger
number of elements in the MDD. Similarly, the minority operation finds the cell
value with fewer number of elements. As an example, consider the following query:

Query 4.15. Return the cell representing the majority of all cell values contained
in a 2D 8-bit gray raster image A shown in Fig. 14(a).

21

To solve this query we can use the histogram computed in Query. 4.2.6, and
then select the cell value representing the majority of the different classes. Let
h be a 1-D array containing the histogram values, h1 a 1-D array of spatial do-
main[0:255] containing a list of values from 0 to 255. Let h2 be an array containing
the sum of h and h1:

h2 = MARRAY[0:255],g(h + h1)

then, majority can be computed as follows:

COND+,sdom(A),i((max cells(h) = (h2[i]− h1[i])) ∗ h1[i])

Results are shown in Fig. 14.

(a) Classified raster (b) Majority class

Figure 14: Usage of maximum aggregate function in computing a majority oper-
ation.

4.3 Statistical operations

The basic statistical functions include standard deviation, root square, power,
mode, median, variance, and top-k. These functions can be applied to a raster,
or set of rasters that are retrieved by a logical search. Consider the following
examples:

22

4.3.1 Variance

Let n be the cardinality of A, n = card(sdom(A)); and avg a variable containing
the average of all the cell values of A, avg=avg cells(A); then the variance v of A
can be solved as follows:

v(A) =
1

n
∗ COND+,sdom(A),i((A[i]− avg) ∗ (A[i]− avg))

Results are shown in Fig. 15.

Figure 15: Variance operation.

4.3.2 Standard Deviation

Query 4.16. Estimate the standard deviation of the cell values of the NRG raster
image shown in Fig. 8(a).

Let n be the cardinality of A, n = card(sdom(A)); and avg the average of
the cell values of A, avg=avg cells(A); then the standard deviation s of A can be
solved as follows:

s(A) =

√
1

n
∗ COND+,sdom(A),i((A[i]− avg) ∗ (A[i]− avg))

Results are shown in Fig. 16.

4.3.3 Median

The median can be calculated by sorting the MDD A in ascending order and choos-
ing the middle value. In case the number of cells is even, the median is the average
of the two middle values. In solving this operation, we may use the sort operator
to perform the ascending sorter of A. However, for A of dimensionality higher than
1 it is necessary to flat the array into a one-dimensional array. For example, the

23

Figure 16: Standard deviation operation.

conversion from a two-dimensional MDD A[0:m,0:n] into a one-dimensional MDD
B[0:m*n] can be calculated as follows:

Let d be the cardinality of A, d=card(sdom(A); let r be the number of rows;
and let c be the number of columns. Then, the flattening of A can be calculated
as:

B =MARRAY[0:255],g (

COND+,[0:m,0:n],i (

((g > (m ∗ (i− 1))) and (g ≤ i)) ∗ A[1 : (g − (m ∗ (i− 1))), 1 : i]))

Let S be the MDD array containing the sorted values of B (the flattening of A),
S = SORT0,

asc
f (B), and let n be the cardinality of S, n = card(sdom(S)). Then,

the median of A can be solved as follows:

If N is odd then median = S[
n

2
], else median =

S[n−1
2

] + S[n+1
2

]

2

As another example consider the following query:

Query 4.17. Obtain the median of the 1-D array A whose cell values are shown
in Fig. 17(a).

Since we have an even number of elements the computation of the query is as
follows:

A[card(A)/2]

Results are shown in Fig. 17(b).

4.3.4 Top-k

The Top-k function returns the k cells with highest value of a MDD. For example,
consider the following query:

24

(a) 1-D array

(b) Median

Figure 17: Median operation.

25

Query 4.18. Find the 5 highest values contained in the MDD A.

To solve this query we can first sort A in ascending order and then select the
top 5 values. Let d=0 to indicate a sorting in the 0 dimension, and let f be
the sorting function fd,A(p)=A[P], then S is a sorted array of the MDD A (see
Fig. 17(a)):

S = SORT0,
asc
f (A)

thus, the top 5 cell values are obtained by:

S[0 : 4]

(a) Top 5 values

Figure 18: Top-k operation.

4.3.5 Edge Detection

Edge detection produces a new MDD containing only boundary cells of a given
MDD. The detection of intensity discontinuities in a MDD is very useful, e.g.
the boundary representation is easy to integrate into a large variety of detection
algorithms. The following parameterized function can be used to express filtering
operations in Array Algebra:

f(A, M) = MARRAYsdom(A),x(COND+,sdom(M),i(A[x + i] ∗M(y)))

where sdom(M) is the size of the corresponding filter window, e.g., 3x3. As an
example consider the following query:

Query 4.19. Apply edge detection to the MDD A shown in Fig. 20(a) using a
3x3 Sobel filter.

26

To compute this query, a Sobel filter and its inverse is applied in the original
MDD A (see Fig. 19):

|f(A, M1)|+ |f(A, M2)|
9

=

which in Array Algebra can be computed as follows:

MARRAYsdom(A),x (COND+,sdom(M1),i (

(abs(A[x + i] ∗M1(i))) + (abs((A[x + i] ∗M2(i))))/9))

Results are shown in Fig. 20.

(a) M1 (b) M2

Figure 19: Sobel Masks

(a) Original raster image (b) Output raster image

Figure 20: Edge detection operation

27

4.4 Affine Transformations

Geometric transformations permit the elimination of geometric distortion that oc-
curs when an image is captured. An example is the attempt to match remotely
sensed images of the same area taken after one year, when the more recent image
was probably not taken from precisely the same position. Another example is the
Landsat Level 1B data which are already transformed to a plane, but that may not
be rectified to the user’s desired map projection [22]. Applying an affine transfor-
mation to a uniformly distorted raster image can correct for a range of perspective
distortions by transforming the measurements from the ideal coordinates to those
actually used. An affine transformation is an important class of linear 2-D ge-
ometric transformations which maps variables (e.g. cell intensity values located
at position (x1,y1) in an input raster image) into new variables (e.g. (x2,y2) in
an output raster image) by applying a linear combination of translation, rotation,
scaling and shearing (i.e. non-uniform scaling in some directions) operations [29].
The computation of these operations may require of interpolation techniques. In
[20], interpolation is defined as the process of predicting a value of an attribute ẑ
at an un-sampled site X0. The following are the most popular approaches:

• Nearest neighbor selects the value of the nearest point in order to predict the
cell value for a non-given point in some space. That is, the cell that is closest
to the re-transformed coordinate is the nearest neighbor. This approach is
suitable when using thematic rasters.

• Bilinear interpolation estimates the average of the four closest cells to the
specified input cell and assigns that value to the output cell. Because the
cell values are altered (averaged) by this method, any classification pro-
cess should be performed before interpolation. Resulting output images are
smoother that those obtained with nearest neighbor.

• Cubic interpolation determines the new value from the weighted average
of the 16 closest cells to the specified input cell, and assigns that value to
the output cell. This method has the tendency to sharpen the edges of
the data more than bilinear interpolation since more cells are involved in the
calculation of the output value. Bilinear or Cubic interpolation should not be
used on categorical data since the original categories will not be maintained
in the output raster dataset.

In the remaining of this Section we discuss special cases of affine transforma-
tions.

4.4.1 Translation

Translation performs a geometric transformation which maps the position of each
cell in an input raster image into a new position in an output raster image. Under

28

translation, a cell located at (x1,y1) in the original is shifted to a new posi-
tion (x2,y2) in the corresponding output raster image by displacing it through a
user-specified translation vector (h,k). The cell values remain unchanged and the
spatial domain of the output raster image is the same as the original input raster.
Consider for example, the following query:

Query 4.20. Shift the spatial domain of a MDD with spatial domain A[0:255,0:255]
by the point [100:50].

The query can be solved by invoking the shift function of Array Algebra:

shift(A[0 : 255, 0 : 255], [100 : 50]])

Results are shown in Fig. 21.

(a) Original domain (b) Translated domain

Figure 21: Translation operation.

4.4.2 Rotation

Rotation performs a geometric transformation which maps the position (x1,y1) of
a cell in an input raster image onto a position (x2,y2) in an output raster image
by rotating it, clockwise or counterclockwise, through a user-specified angle (θ)
about an origin O. Thus, the rotation operation performs a transformation of the
form:

x2 = cos(θ) ∗ (x1− x0)− sin(θ) ∗ (y1− y0) + x0

y2 = sin(θ) ∗ (x1− x0) + cos(θ) ∗ (y1− y0) + y0

29

where (x0,y0) are the coordinates of the center of rotation in the input raster
image, and θ is the angle of rotation. Existing algorithms for the computation of
rotation, unlike those employed by translation, can produce coordinates (x2,y2)
which are not integers. A common solution to this problem is the application
of interpolation techniques like nearest neighbor, bilinear, or cubic interpolation.
For large raster datasets this is a very intensive computing problem because every
output cell must be computed separately using data from its neighbors. Conse-
quently, the rotation operation is not yet properly supported by Array Algebra
and it is currently object of research within our group.

4.4.3 Scaling

Scaling allows stretching or compressing the coordinates of a MDD (or part of
a MDD) according to a scaling factor. This operation can be used to change
the visual appearance of an image, to alter the quantity of information stored in a
scene representation, or as a low-level preprocessor in multi-stage image processing
chain which operates on features of a particular scale. For the estimation of the
cell values in the output raster image two common approaches exist:

• one pixel value within a local neighborhood is chosen (perhaps randomly) to
be representative of its surroundings. This method is computational simple
but it may lead to poor results when the sampling neighborhood is too large
and diverse.

• the second method interpolates cell values within a neighborhood by taking
the average of the local intensity values.

As in the rotation operation, the application of scaling using interpolation tech-
niques in large raster datasets is a very intensive computing problem because every
output cell must be computed separately using data from its neighbors. Consider
the following query performing the scaling operation using bilinear interpolation.
That is, the cell value for (x0,y0) in the output raster is calculated by averaging
the values of its nearest cells: two along the horizontal plane (x0,x1) and two in
the vertical plane (y0,y1). Note that the query is applied in a raster of spatial
domain [0:255, 0:255] but as it was mentioned earlier in this report, raster datasets
tend to be extremely large.

Query 4.21. Scale the 2D raster shown in Fig. 22(a), along the x and y dimen-
sions by a factor of 2.

The query can be solved as follows:

B = MARRAY[0:m
2

,0:n
2
],(x,y)(COND+,[0:1,0:1],(i,j)(A[i + x ∗ 2, j + y ∗ 2]/4))

Results are shown in Fig. 22.

30

(a) Original raster (b) Scaled raster

Figure 22: Scaling operation

4.5 Slicing

The slicing operation allows to extract lower-dimensional sections from a MDD.
Array Algebra accomplishes the slicing operation by indicating the slicing position
in the desired dimension. Thus, this operation reduces the dimensionality of the
MDD by one. For example, consider the following query:

Query 4.22. Slice the MDD A along the second dimension at position 50.

The query is solved by specifying the slicing position as follows:

MARRAYsdom(A),(x,y,z)(A[x, 50, z])

31

4.6 Terrain Analysis

Raster image data is particularly useful for tasks related to terrain analysis. Some
of the most popular operations include slope/aspect, drainage networks, and catch-
ments (or watersheds). The processing of these operations may involve interpola-
tion techniques, which lead to expensive computational costs. For simplicity, we
model these operations with approaches not using interpolation methods.

4.6.1 Slope/Aspect

Slope is defined by a plane tangent to a topographic surface, as modelled by the
DEM at a point [20]. Slope is classified as a vector, thus having two components:
a quantity (gradient) and a direction (aspect). The slope (gradient) is defined as
the maximum rate of change in altitude, and aspect as the compass direction of
this maximum rate of change. Several approaches exist for the computation of
slope/aspect, we follow the method proposed by [21]:

• slope in the X direction (difference in the height values either side of P is
give by:

TanΘx =
z(r, c + 1)− z(r, c− 1)

2g

• slope in the Y direction

TanΘy =
z(r + 1, c)− z(r − 1, c)

2g

• Gradient at P √
(tan2Θx + tan2Θy)

• Direction or aspect of the gradient

tanα =
tanΘx

tanΘy

Note that after the calculation of the slopes for each cell in a raster image, the
results may need to be classified in order to display them clearly on a map [20].

Query 4.23. Calculate the slope along the X direction of a 8-bit grey MDD A:

MARRAYsdom(A),(r,c)
(arctan(A(r, c + 1)− A(r, c− 1)))

2g

32

Figure 23: Slopes along the X and Y directions.

4.6.2 Local drain directions (ldd)

The ldd network is useful for computing several properties of a DEM because
it explicitly contains information about the connectivity of different cells. Two
steps are required to derive a drainage network: the estimation of flow of material
over the surface and removal of pits. For instance (see Fig. 24), cell A1 has 3
neighboring cells (A2, B1 and B2) and the lowest of them is B1, thus the flow
direction is south (downward). For cell C3, the lowest of its 8 neighboring cells is
D2, so the flow direction is southwest (to lower left). This method is one of the
most popular algorithms to estimate flow directions and it is commonly known as
D8 algorithm [20].

Figure 24: Flow Directions

Query 4.24. Estimate the flow of material over a MDD A where each cell contains
the slope along the X direction.

Let A be a MDD with the slopes along the X direction of A, then the ldd is
calculated as:

MARRAYsdom(A),(i,j)(CONDmin,[−1:1,−1:1],(v,w) (A[i + v, j + w]))

Irrespective of the algorithm used to compute the flow directions, the resulting
ldd network is extremely useful for computing other properties of a DEM, e.g.,
stream channels, ridges, and catchments.

33

5 A Raster Operations Classification Scheme

By examining the fundamental structure of the operations presented in Section 4
and by breaking down all the steps required for their computation to a few basic
Array Algebra operators, we distinguish the following basic classes of operations
with geo-raster data:

• COND and MARRAY combined operations. This group contains operations
whose computation requires of both MARRAY and COND operators:
add, count, average, maximum, minimum, majority, minority, histogram,
diversity, variance, standard deviation, scaling, edge detection, and local
drain directions.

• MARRAY exclusive operations. This group contains operations whose com-
putation requires only of the MARRAY operator:
arithmetic, trigonometric, boolean, logical, overlay, reclassification, proxim-
ity, translation, slicing, and slope/aspect.

• SORT operations. This group contains operations whose computation re-
quires of the SORT operator: top-k, median.

• AFFINE transformations. This group contains special cases of affine trans-
formations partially or not supported yet by Array Algebra:
interpolation, rotation, scaling, re-projection

From these groups of operations we can identify a set of operations that re-
quire of data summarization and thus, the potential candidates to be treated with
OLAP pre-aggregation techniques: add, count, average, maximum, minimum, ma-
jority, minority, histogram, diversity, variance, standard deviation, scaling, edge
detection, and local drain directions.

Table 3 summarizes the usage of Array Algebra operators for each operation
discussed in Section 4.

6 Summary and Future Work

In this report we have presented a set of fundamental operations with raster image
data. The selection of the operations was mainly derived from an exhaustive
review of existing surveys in GIS operations. In order to better understand the
structure of the most common queries in this type of databases, we have modeled
the operations using an algebraic framework in our case, Array Algebra. By
comparing the operators required for the computation of the modeled operations
we identified a set of operations that require of data summarization (aggregation)
and therefore, potential candidates to be treated with pre-aggregation algorithms.

3Array Algebra partially supports the scaling operation.

34

Table 3: An operators-based classification of geo-raster operations.

Operation MARRAY COND SORT AFFINE
1. Count x
2. Add x
3. Average x
4. Maximum x
5. Minimum x
6. Majority x x
7. Minority x x
8. Std. Deviation x
9. Median x x
10. Variance x
11. Top-k x
12. Histogram x x
13. Diversity x x
14. Proximity x
15. Arithmetic x
16. Trigonometric x
17. Boolean x
18. Logical x
19. Overlay x
20. Re-Classification x
21. Re-projection x
22. Interpolation x
23. Translation x
24. Rotation x
25. Scaling3 x x x
26. Slicing x
27. Edge Detection x x
28. Slope/Aspect x
29. Local drain directions (ldd) x x

We are currently working in the formalization of the required elements in the
raster data model for the implementation of OLAP pre-aggregation algorithms.
We believe that applying such techniques will speed up significatively the process-
ing of aggregate queries in raster image databases.

35

References

[1] Hanan Samet, Foundations of Multidimensional and Metric Data Structures,
pp. 191-202, Morgan Kaufmann Publishers, 2006.

[2] Gutpa, A., Harinarayan, V., Quass, D., Aggregate-Query Processing in Data
Warehousing Environments, Proc. 21st VLDB Conference Zurich, Swizerland,
1995.

[3] Zhuge, Y., Garcia-Molina, H., Hammer, J., Widom, J., View Maintenance
in a Warehousing Environment, Proc. of the ACM SIGMOD International
Conference on Management Data, 1995.

[4] Baralis, E., Paraboschi, S., Teniente, E., Materialized View Selection in a
Multidimensional Database, Proc. of the 23rd BLVD. conference in Athens,
Greece, 1997.

[5] Shukla, A., Naughton, K., Deshpade, P., Materialized View Selection for
Multidimensional Datasets, Proc. of 24th VLDB Conf., pp.488-499, 1998.

[6] Ramachandran, K., Shah, B., Raghavan, V., Dynamic Pre-Fetching of Views
Based On User-Access Patterns in an OLAP system, 2005.

[7] Harinarayan, V., Rajaraman, Ullman, J., Implementing Data Cubes Effi-
ciently, Proc. SIGMOD, pp. 205-216 1996.

[8] Gutpa, A., Harinarayan, V., Rajaraman, A., Index Selection for OLAP, Proc.
of ICDE, pp. 208-219 1997.

[9] Ullman, J., Efficient Implementation of Data Cubes via Materialized Views,
Proc. KDD, pp. 386-388 1996.

[10] Agrawal, S., Chaudhuri, S., Narasaya, V., Automated Selection of Material-
ized Views and Indexes in SQL Databases Proc. of VLDB, pp. 496-505 2000.

[11] Shrivastava, D., Dar, S., Jagadish, H., Levy, A., Answering Queries with
Aggregation Using Views Proc. of VLDB, pp. 318-329 1996.

[12] Raja S., Chen Y., A Hybrid Spatio-Temporal Data Model and Structure
(HST-DMS) for Efficient Storage and Retrieval of Land Use Information,
Transactions in GIS 8 (3), pp. 351-366, 2004.

[13] Peuquet Donna J., Making space for time: Issues in space-time data represen-
tation, Geoinformatica (Geoinformatica) ISSN 1384-6175, vol. 5, pp. 11-32,
2001.

[14] Baumann P., A Database Array Algebra for Spatio-Temporal Data and Be-
yond, NGITS’99 LNCS 1649 pp.76-93, 1999.

36

[15] Howe B., Algebraic Manipulation of Scientific Datasets, Proc. of the 30th
VLDB conference, 2004.

[16] van Ballegooij A. R., Cornacchia R., de Vries A. P., Kersten M. L., Distribu-
tion Rules for Array Database Queries, International Workshop on Database
and Expert Systems Application, pp. 55-64, 2005.

[17] Reiner B., Hanh K., Tertiary Storage Support for Multidimensional Data,
IEEE Distributed systems, 1541-4922, vol 5. No.5, 2004.

[18] Rivest S., Bedard Y., Proulx M-J., Nadeau M., Hubert F., Pastor J., SO-
LAP technology: Merging business intelligence with geo-spatial technology
for interactive spatio-temporal exploration of data, ISPRS Journal of Pho-
togrammetry and Remote Sensing, 2005.

[19] Han J., Stefanovic N., Koperski K., Selective Materialization: An Efficient
Method for Spatial Data Cube Construction, Proc. Conference on knowledge
discovery and data mining, pp.144-158, 1998.

[20] Burrough P.A., McDonell R.A., Principles of Geographical Information Sys-
tems, Ch.7, pp. 162-179, Ch. 8, pp. 183-185 Oxford, 2004.

[21] O’Sullivan D., Unwin D., Geographic Information Analysis, John Wiley, 2003.

[22] ERDAS IMAGINE, ERDAS Field Guide, Fourth Edition, 1997,

[23] Albrecht J. H., Universal GIS Operations for Environmental Modeling, Proc.
3rd International Conference on Integrating GIS and Environmental Model-
ing, Santa Fe, NM. Santa Barbara, 1996.

[24] Kvamme Kenneth A., Fundamental Raster Operations, n.d.

[25] Aronoff, S., Geographic Information Systems: A Management Perspective,
WDL Publications, p. 294. 1991.

[26] Nguyen D. H., Using Javascript for some Interactive Operations in Virtual
Geographic Model with GEOVRML, Proc. Int. Symposium on Geoinformat-
ics for Spatial Infrastructure Development in Earth and Allied Sciences, 2006.

[27] ArcGIS 9, Geo Processing Commands, quick reference Guide, 2004.

[28] Open GIS Consortium, Web Coverage Processing Service (WCPS), best prac-
tices document # 06-035r1, pp. 21-47, 2006.

[29] Lusch D.P., A Classification of GIS Functions, Technical Report, Center for
Remote Sensing, Michigan State University, 1999.

37

[30] Mennis J., Viger R., and Tomlin C.D, Cubic Map Algebra Functions for
Spatio-Temporal Analysis, Cartography and Geographic Information Science,
Vol. 32, No. 1, 2005, pp. 17-32

[31] Tomlin C. D., J. K. Berry, A mathematical structure for cartographic model-
ing in environmental analysis. In 39th annual symposium proceedings. Amer-
ican Congress on Surveying Mapping, pp. 269-284, 1979.

[32] Tomlin C.D., Geographic Information Systems and Cartographic Modelling,
Prentice-Hall, New Jersey, 1990.

[33] Libkin L., Machlin R., Wong L., A query language for multidimensional ar-
rays: design, implementation and optimization techniques. In Proceedings of
the ACM SIGMOD International Conference on Management of Data (SIG-
MOD’96), pages 228-239.

[34] Baumann P., On the Management of Multidimensional Discrete Data, VLDB
Journal 4(3), pp. 401 - 444. Special Issue on Spatial Database Systems, 1994.

[35] Baumann, P., The RasDaMan Array Algebra, RasDaMan Project Technical
Report for012, FORWISS, 1998.

[36] Ritter G., Wilson J., Davidson J., Image algebra: An Overview, Computer
Vision, Graphics, and Image Processing, 49(1):297-331; 1990.

[37] Marathe A., Salem, K., A language for manipulating arrays. In Proc. Interna-
tional Conference on Very Large Data Bases (VLDB’97), pages 46-55, August
1997.

[38] Furtado P., Storage Management of Multidimensional Arrays in Database
Management Systems. Dissertation, Technische Universitdt M—nchen, 1999.

[39] Baumann P., Large-Scale Raster Services: A Case for Databases. Invited
keynote, 3rd Intl Workshop on Conceptual Modeling for Geographic Infor-
mation Systems (CoMoGIS), In: John Roddick et al (eds): Advances in
Conceptual Modeling - Theory and Practice, 2006, pp. 75 - 84, 2006.

[40] Ritter G., Wilson J., Davidson J., Image Algebra: An Overview, Computer
Vision, Graphics, and Image Processing, 49(1), pp. 297-336, 1994.

[41] Baumann, P., Language Support for Raster Image Manipulation in
Databases, Proc. Int. Workshop on Graphics Modeling and Visualization in
Science & Technology, Darmstadt, Germany, 1992.

[42] Stonebraker M., Moore, D., Object-Relational DBMSs. The Next Great
Wave. Morgan Kaufmann Publishers, 1996.

38

	Introduction
	Choice of Methodology and Related Work
	Geo-Raster Operations
	Algebraic Frameworks

	Array Algebra
	Overview
	N-Dimensional Interval Arithmetics
	The Core Algebra
	Derived Operators
	Trimming and Section
	Induced Operations

	Modeling Operations
	Mathematical operators
	Reclassification
	Proximity
	Overlay

	Aggregate operations
	Add
	Count
	Average
	Maximum
	Minimum
	Histogram
	Diversity
	Majority/Minority

	Statistical operations
	Variance
	Standard Deviation
	Median
	Top-k
	Edge Detection

	Affine Transformations
	Translation
	Rotation
	Scaling

	Slicing
	Terrain Analysis
	Slope/Aspect
	Local drain directions (ldd)

	A Raster Operations Classification Scheme
	Summary and Future Work

