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Abstract—Datacubes form an accepted cornerstone for 

analysis (and visualization) ready spatio-temporal data 

offerings. Geo datacubes have been standardized since long 

under the umbrella concept of coverages, and such data 

structures are well understood in concept and practice. This, 

however, is not paired by a similar understanding of coverage 

analytics. 

We present a formal model for datacube analytics which is 

based on Linear Algebra, incorporates space and time 

semantics, and allows a wide range of common datacube 

operations, up to, say, the Discrete Fourier Transform. For 

convenience, the formalism is based on a language allowing 

expressions of any complexity. 

The specification is currently in the avanced adoption 

process of ISO for becoming the future 19123-3 standard. 
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I. MOTIVATION 

Datacubes introduce function-rich services on spatio-
temporally aligned, homogenized raster data assets typically 
coming as sensor, image (timeseries), simulation, and statist-
ics data. Actionable datacubes support analytics through the 
paradigm of “any query, any time, on any size” [6] originally 
coined by research on Array Databases [7]. Today datacubes 
are an accepted cornerstone for providing data ready for 
analysis, fusion, and visualization. In particular this is due to 
the homogenization of the zillions of scenes and other data 
into spatio-temporal units where each one has its common 
coordinate system, pixel type, etc. Thanks to the flexibility of 
the OGC / ISO / EU INSPIRE coverage standards [8] there is 
still sufficient degree of freedom to accommodate missing 
data areas in datacubes, regular as well as irregular grids, and 
a wide variety of data formats while retaining inter-
operability to allow, for example, simple fusion of datacubes 
with different dimensions and coordinate systems. 

Given the ever-increasing importance of coverage 
services going far beyond mere subsetting there is a strong 
need to standardize not only data representation and 
exchange, but also the capabilities of services in an 
interoperable manner – not the least for the emerging vision 
of interoperable automated service mashups. 

Datacube query languages establish actionable datacubes 
enabling users to ask "any query, any time" without pro-
gramming, and independent from internal storage and 
external ingest/delivery data formats. Following this philo-
sophy, 19123-3 is independent from any concrete coverage 
encoding format (such as GeoTIFF, NetCDF, etc.) and 
concrete processing language (such as python, R, 

SQL/MDA, etc.). Likewise, it is not a service, but rather 
provides the basis for service concretizations such as those 
existing in OGC:WCS GET/KVP, WCS POST/XML, WCS 
SOAP, OAPI-Coverages, and OAPI-Processing. In future, 
ISO TC211 possibly might establish concrete coverage 
services in a forthcoming 19123-4. 

However, due to the highly dynamic nature of the field it 
is not easy to understand terms, trends, and technologies, and 
how they relate or differ. It helps to look at standards where, 
centered around the notion of a “coverage”, the main geo 
standardization bodies of OGC, ISO, and INSPIRE have 
established a mature, agreed, modular data and service model 
allowing implementations to differ in the extent of support 
while still remaining interoperable. For example, in the Web 
Coverage Service (WCS) suite WCS-Core just offers 
subsetting and format encoding while on the high end Web 
Coverage Processing Service (WCPS) offers a datacube 
analytics language. 

In this paper, we report about our work on establishing an 
ISO standard for the foundations of datacube processing, 
based on a language for extraction, filtering, processing, 
analytics, and fusion of multi-dimensional geospatial data-
cubes representing, for example, spatio-temporal sensor, 
image, simulation, or statistics datacubes. Expressions in this 
language accept any number of input datacubes (together 
with further common inputs like numbers) to generate any 
number of output datacubes or scalar results. 

The data model used for geo datacubes is given by the 
ISO coverage model as defined in the twin draft standard 
19123-1 [5]. A coverage describes mathematical fields 
through several – practically induced – techniques, specific-
ally: regular and irregular grids, point clouds, and general 
meshes. 

The language is functionally defined and free of any side 
effects. It has a formal semantics foundation and is minimal: 
only two constructs establish all coverage processing: A cov-
erage constructor to build (or derive) a coverage and an agg-
regation operator (called condenser) deriving summary infor-
mation. Further convenience functions are derived from 
those. 

The language does not define a service API – it is indep-
endent from any particular request and response encoding, as 
no concrete request/response protocol is assumed. Hence, 
this standard rather acts as the foundation for defining 
service standards functionality. Currently such concrete 
service definitions exist with OGC Web Coverage Service 
(WCS) [4] via GET/KVP, POST/XML, SOAP protocol 
bindings, as well as with emerging specifications like OAPI-
Coverages [13] and OAPI-Processes [12]. 
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The datacube analytics specification has been finalized 
and submitted for voting to the national delegations under its 
identifier 19123-3. This work is part of ISO plans on further 
populating the coverage ecosystem. Fig. 1 shows possible 
evolution paths and the position of 19123-3 in it. 

 

 

Fig. 1. Possible evolution of coverage standards in ISO 

For the purpose of this paper we refer to the 19123-1 
draft specification as Coverage Fundamentals (CF) and the 
19123-3 draft text as Coverage Processing Fundamentals 
(CPF). 

In its current version CPF supports grid coverages with 
index, regular, and irregular axes. In the future it is foreseen 
that the standard gets extended so as to address all CF types. 

The remainder of this contribution is organised as 
follows. In the next section we provide an overview of the 
datacube part of the coverage model as a background. After 
that, the CPF processing language is introduced in Section 3. 
A comparison against the state of the art is provided in 
Section 4. Section 5 gives a summary and an outlook. 

II. COVERAGES AND DATACUBES 

For the reader’s convenience this section gives a brief 
informal recap of the CF model, under adoption by ISO as 
19123-1. A detailed description is provided in [5]. 

Following the mathematical notion of a function that 
maps elements of a domain (here: spatio-temporal coordin-
ates) to a range (here: “pixel”, “voxel”, etc. values), a cover-
age consists of: 

• an identifier which uniquely identifies a coverage in 
some context (here: the context of an expression); 

• a domain set of coordinate points (expressed in a 
common Coordinate Reference System, CRS): 
“where in the multi-dimensional space can I find 
values?” 

• a probing function which answers for each coverage 
coordinate in the domain set (“direct position”): 
“what is the value here?” 

• a range type: “what do those values mean?” 

• optional metadata: “what else should I know about 
these data?” 

The coverage concept encompasses regular and irregular 
grids, point clouds, and meshes. In our context, we only 
consider multi-dimensional grid coverages which are used to 
represent datacubes. CF supports a very general grid concept 
where any kind of regular and irregular grids is supported; 
Fig. 2 shows some examples. 

In an interface-oriented UML specification such a 
coverage, on abstract level can be described as in Fig. 3.  

 

Fig. 2. Sample regular and irregular grid structures [5] 

 

Fig. 3. Interface-oriented specification of coverages and grid coverages 
[10] 

III. A LANGUAGE FOR COVERAGE ANALYTICS 

Being on the same conceptual abstraction level as CF, the 
CPF likewise is not at implementation level (in particular: 
does not define a concrete service), but rather establishes 
coverage processing concepts that may serve to conceptual-
ize concretizations, such as the OGC Web Coverage Service 
(WCS) API. Actually, core concepts draw on the OGC Web 
Coverage Processing Service (WCPS) language; however, 
CPF has been stripped from several OGC legacyand lifted to 
the abstract CF data model. 

In CPF, the following CF axis types are supported: 

• A Cartesian (“index”) axis just requires lower and 
upper bound (which are of type integer). 

• A regular axis which can be described by lower and 
upper bounds together with a constant distance, the 
resolution. 

• An irregular axis which has individual distances, 
described by a sequence of coordinates. 

The coverage domain set with its axes has a single native 
CRS which may allow georeferencing. Additionally, the 
underlying grid structure is defined through a Cartesian grid 
CRS. Both CRSs have the same dimension, i.e.: number of 
axes. In CPF, CRSs are addressed by name in expressions. 
Both CF and CPF do not make any assumptions about the 
nature of identifying CRSs, but rather treat them as opaque 
identifiers. 

These concepts are formalized in CPF through so-called 
probing functions which extract information from an other-
wise abstract, encapsulated object following the theory of 



Abstract Data Types [1]. Table I summarizes representative 
probing functions. 

A. Processing Expressions 

The CPF coverage processing language defines 
expressions on coverages which evaluate to ordered lists of 
either coverages or scalars (whereby “scalar” here is used as 
a summary term of all data structures that are not coverages). 
In the sequel, the terms processing expression and query are 
used interchangeably. 

A CPF coverage processing expression consists the CPF 
primitives plus the nesting capabilities, altogether forming an 
expression language which is independent from any particul-
ar encoding and service protocol. The semantics of a CPF 
expression is defined recursively by indicating, for all 
admissible expressions, the semantics which is given by the 
probing function output when applied to a coverage-valued 
expression. 

The basic shape of a CPF query is given by 

for v1 in ( L1 ), 

     v2 in ( L2 ), 
      … , 

     vn in ( Ln ) 

 [ let c1 := e1, …, cm := em ] 

 [ where P ] 
 return E 

The Li are lists in the for clause are coverages to which 

the corresponding variables v1 are bound in sequence. This 

establishes an iteration over these coverages. Having several 
variables establishes a nested loop where any number of 
covverages can be combined for fusion. 

Optional let clause is just for convenience – it allows 
for convenient abbreviations of sub-expressions. 

Table I. —  SELECTION OF COVERAGE PROBING FUNCTIONS 

Coverage  

characteristic 

Probing function for some 

coverage C as per CF 

Comment  

Coverage identifier id(C ) as per CF Identifier of the coverage 

Coverage native CRS nativeCrs( C ) as per CF Native CRS of the coverage 

Coverage grid CRS gridCrs( C ) as per CF Grid CRS of the coverage 

CRS axis list axisList( crs ) = (a1,…,ad) for 

some d-D CRS crs establishing 
this axis sequence 

List of all axes of the CRS, in proper sequence 

Domain extent of 
coverage, in its native 
CRS 

domainSet( C ) as per CF Extent of the coverage in native CRS coordinates 

Domain extent of 
coverage, in its grid CRS 

gridDomainSet( C ) as per CF Extent of the coverage in Cartesian grid coordinates, relative to 
the coverage’s grid CRS 

Range type rangeType( C ) as per CF The range type record is described by a list describing its 
components in sequence; for the purpose of 190123-3 only 
component name and its data type are considered. 

Range field name list rangeFieldNames( C )  

= (f1, …, fn) with field names fi  
Ordered list all of the coverage’s range fields names and their 
data types; possible further constituents in a record component 
are ignored in this standard, their values are to be defined else-
where (e.g., implementation dependent) 

Range values  value(C,p) = evaluateC(p), 

p∈domainSet(C) 
with evaluate() as per CF 

Direct Positions can be expressed either in the native or the grid 
CRS. We use the standard array notation of C[p] alternatively. 

Interpolation interpolation( C ) as per CF List of the interpolation method allowed per axis, in axis order 

Interpolation associated with a particular axis 

Metadata of coverage metadata( C ) as per CF a string without further structure nor semantics, seen from a 
19123-1 perspective 



In the return clause, coverage expression E performs 
the analytics. These expressions may contain occurrences of 
the variables defined in the for and let clauses. If the result 
is scalar it will be returned as ASCII, coverage-valued results 
need to be encoded in some suitable data format. 

The optional where clause performs filtering: only those 

coverages where the filter predicate P evaluates to true are 
forwarded for processing the return clause instantiation.  

For example, assume availability of coverages A, B, and 
C. Then, the following CPF query 

for $c in ( A, B, C ) 
return encode( $c, "image/tiff" ) 

will produce a result list containing three TIFF-encoded 
coverages. In the next example, assume availability of 
satellite images A, B, and C and a coverage M acting as a 
mask (i.e., with range values of 0 and 1 and the same extent 
as A, B, and C). Then, masking each satellite image can be 
performed with this query: 

for $s in ( A, B, C ), 
    $m in ( M ) 
return encode( $s * $m, "image/tiff" ) 

The operations available for building filter and 
processing expressions are based on only two primitives, a 
coverage constructor and an aggregation operation, called 
condenser. 

B. Coverage Constructor 

A coverage constructor creates a d-dimensional grid cov-

erage for some d≥1 by defining the coverage’s domain set, 
range type, range set, and metadata through expressions. This 
allows deriving entirely new shapes, dimensions, and values.  

The coverage domain set is built from a CRS defining the 
multi-dimensional axes and the meaning of coordinates, 
including units of measure; indicating the coordinates of the 
direct positions, i.e., the points where values sit. 

Axis names can be chosen according to the rules of CF; it 
is recommended to keep native and grid CRS axis names 
disjoint. 

A range type expression optionally creates the coverage 
range type. In the scope of the embedding CPF condensers 
this expression defines the range component names as known 
(immutable) variables. Values derived for some such range 
component will automatically be cast to the target type of 
that range component. 

A range set expression creates the coverage range set. A 
corresponding scalar expression is evaluated at every direct 
position of the coverage’s domain set. 

An optional metadata expression creates the coverage 
metadata component. As such metadata are not interpreted 
by the coverage they are represented as a string which may 
contain any character, depending on the character set 
supported. 

Syntactically, a coverage is built as  

coverage id [ D ] [ T ] R [ M ] 

with the following constituents. The id parameter is the 
new name of the coverage. In a concrete service, the name 
may be required to not exist in the service data pool yet. On 

this level of abstraction, however, no such requirement is in 
order. 

The D parameter defines the domain set, through its 
constituents CRS, each axis with its type – regular or 
irregular – and its constituents such as lower and upper 
bound, resolution (if regular), etc. For example, the 
following clause defines a 2-D grid with axes Lat and Long. 
Both axes are regular with the indicated extent and 
resolution. The common CRS defining them is WGS84 
which has the EPSG code 4326. Further, interpolation along 
both axes is set to linear: 

domain set 
crs “EPSG:4326” with 
  Lat  regular (10:30) resolution 0.01 
    interpolation linear, 
  Long regular (10:30) resolution 0.01 
    interpolation linear 

A typical range type definition T for 3-band RGB images 
is expressed as follows: 

range type 
  red  :integer, 
  green:integer, 
  blue :integer 

The range set definition provides an expression which is 
evaluated for each cell („direct position“ in CF terminology) 
for determining the value of each cell in the datacube. An 
example for such an expression is 

range set (integer) $c / 2 

Every cell value of the output coverage is given by taking 
the corresponding value of the $c coverage, dividing it by 2, 
and casting the result to an integer value. 

This implicit iteration over all elements defined in the 
domain set, i.e., its direct positions, allows for operations that 
sometimes are called „embarrassingly parallel“, or local 
operations in Tomlin’s Map Algebra [14]. However, the 
mechanics of the constructor provides not only the iteration 
over all the direct positions, but also the coordinate iteration 
variables, available through the axis names. In the following 
example the result value for each direct position is 
determined from subtracting two adjacent time slices in 
coverage $c. In a 3-D x/y/t timeseries datacube this would 
effectively determine change: 

range set 
  $c[ date(date-1) ] - $c[ date(date) ] 

Note that the axis name serves to identify the axis 
addressed and also the variable contents. The syntactic 
position guarantees differentiating both positions. Beyond 
local operations this allows expressing also Tomlin’s zonal, 
focal, and global operations.  

The metadata element M, finally, allows associating a 
metadata string. As the syntax and semantics of the metadata 
remains opaque and unknown in this framework there are no 
particular rules on this string – it might be XML, JSON, or 
any other structure defined by some concrete standard based 
on CPF. In CPF, this might simply be written as 

metadata “any metadata contents“ 

In a fully fledged coverage constructor all these clauses 
are present. However, in particular where other coverages are 
referenced some details often can be inferred – for example, 



if for some given datacube all values simply are halved then 
obviously the domain set of the derived cube is that of the 
original cube. In many cases this yields very compact 
expressions, such as 

coverage LogOfCube 
range set log( $c ) 

This gives rise to induced expressions: For cell-wise 
operations the result coverage is trivially defined through the 
input coverage constituents. We simply write the range set 
expression and define its semantics through the corresp-
onding coverage constructor. All common arithmetic, comp-
arison, trigonometric, and exponential become immediately 
available this way, and additionally „if“ statements, records 
access, etc. become defined naturally.  

We illustrate these unary, binary, and n-ary induced 
operations by a binary addition of two coverages $c and $d 
which both need to agree in their domain set – say, axes x 
and y – and need to have compatible range types. Then,  

$c + $d 

is equivalent to 

coverage Sum 
domain set domainSet($c) 
range set 
  $c[ x(x), y(y) ] + $d[ x(x), y(y) ] 

Conversely, by manipulating the domain set while retain-
ing the original coverage values we can define extraction of 
sub-coverages. Following the WCS standard [4], we differ-
entiate subsetting into trimming (which reduces the domain 
footprint, but keeps the dimension) and slicing (which 
reduces the dimension). Then, subsetting can be expressed 
by taking the range values of the input coverage at the 
reduced domain set of coordinates: 

coverage Subset 
domain set 
  crs crs($c) with 
  x index ( x0 : x1 ), 
  y index ( y0 : y1 ) 
range set 
  $c[ x(x), y(y) ] 

This can be simplified to  

$c[ x(x0:x1), y(y0:y1) ] 

For some coverage $c with unknown dimension, but with 
an axis date a time slice at a particular date can be written as  

$c[ date( “2021-08-28” ) ] 

In practice, combinations of constructor and condenser 
are common. 

C. Coverage Condenser 

The second fundamental operator is the condenser. It 
collapses a coverage into a scalar. On principle, any binary 
operation forming a monoid applies; CPF defines addition, 
multiplication,  max,  min, and, and or.  

The general shape of the condenser is: 

condense op 

over name1 axis1( I1 ), 
     …, 

     named axisd( Id ) 

[ where P ] 
using V 

The following expression iterates over a 5000x5000 
extent of image $c delivering the sum of all values encount-
ered at the Direct Positions. 

condense + 
over x ( 0 : 4999 ), y ( 0 : 4999 ) 
using $c[ x(x), y(y) ] 

Again, common shorthands can be defined for simplific-
ation, as summarized in Table II. 

A timeline diagram can be obtained through a 1-D 
expression which aggregates over space while iterating over 
time: 

coverage AverageTemperature 
domain set 
  crs “OGC:DateTime” with 
  t ( domainSet( $tCube, Date ) ) 
range type f: float 
range set 
  condense + 
  over  lat( domainSet( $tCube, Lat ) ), 
        lon( domainSet( $tCube, Lon ) ) 
  using $tCube[ Lat(lat), 
                Lon(lon), 
                Date( t ) ] 

Further, the practically important class of zonal operat-
ions can be expressed. To this end, we first introduce a short-
hand notation for coverages with only Cartesian coordinates. 
3x3 matrices can be expressed like this: 

coverage Sobel3x3 
domain set 
  crs “OGC:Index2D” with 
  i ( -1 : 1 ), j ( -1 : 1 ) 
range type s: integer 
range set 
  <  1;  2;  1; 
     0;  0;  0; 
    -1; -2; -1 
  > 

This matrix can now be used as a filter kernel for edge 
detection as used in a Sobel filter: 

coverage FilteredImage 
domain set 
  crs “OGC:Index2D” with 
  x index ( 0 : 5000 ), 
  y index ( 0 : 5000 ) 
range set 
  condense + 
  over  i ( -1 : +1 ), j ( -1 : +1 ) 
  using   $c.blue[ x(x+i), y(y+j) ] 
        * Sobel3x3[ i(i), j(j) ] 

 

D. Further Functions 

In addition, common convenience functions relevant for 
geo applications are available in the language, such as 
scaling and reprojection. 

The encode function specifies encoding of a coverage-
valued query result by means of a data format and possible 
extra encoding parameters. The decode function, conversely, 
evaluates a byte stream passed as parameter to a coverage by 
decoding the byte stream. This byte stream must represent a 
coverage encoding following CIS 1.1 [8] and its coverage 
encoding profiles. 

 



IV. RELATED WORK 

A. Standardization 

Geo Web services for raster data started with 2D map 
rendering with OGC Web Map Service (WMS). This delivers 
images suitable for human interpretation, but not data results 
that may be perused, e.g., by a GIS analysis tool. Further, no 
processing is supported, just selecting predefined colirng 
styles.  

The emerging OGC Environmental Data Retrieval 
(EDR) standard [9] defines some fixed functionality, in the 

spirit of (but not to the extent) of OGC WCS. There is only 
static functionality, but no flexibility for composing requests 
of arbitrary complexity as in CPF. 

OGC WCS, conversely, is a data-oriented service extens-
ion, however with requests of fixed, static functionality. One 
extension, WCPS, offers a datacube analytics language based 
on the concrete coverage data model CIS; CPF is derived 
from WCPS and reshaped to be the processing counterpart of 
the abstract CF data model of ISO 19123-1. 

 

Table II. —  CONDENSER SHORTHANDS 

reduceExprdefinition1 Description 

add($a) = 

condense + 

over  $p1 (gridDomainSet($a,D1)), 

      …, 

      $pd (gridDomainSet($a,D1)), 

using $a[ $p1 , …, $pd ] 

sum over all points in $a 

avg($a) = 

add($a) / | gridDomainSet($a) | 
average of all points in $a 

min($a) = 

condense min 

over  $p1 (gridDomainSet($a,D1)), 

      …, 

      $pd (gridDomainSet($a,D1)) 

using $a[ $p1 , …, $pd ] 

minimum of all points in $a 

max($a) = 

condense max 

over  $p1 (gridDomainSet($a,D1)), 

      …, 

      $pd (gridDomainSet($a,D1)) 

using $a[ $p1 , …, $pd ] 

maximum of all points in $a 

count($b) = 

condense + 

over  $p1 (gridDomainSet($b,D1)), 

      …, 

      $pd (gridDomainSet($b,D1)) 

where $b[ $p1 , …, $pd ] 

using 1 

number of points in $b 

some($b) = 

condense or 

over  $p1 (gridDomainSet($b,D1)), 

      …, 

      $pd (gridDomainSet($b,D1)) 

using $b[ $p1 , …, $pd ] 

is there any point in $b with value 

true? 

all($b) = 

condense and 

over  $p1 D1(gridDomainSet($b,D1)),…,$pd 

Dd(gridDomainSet($b,D1)) 

using $b[ $p1 , …, $pd ] 

do all points of $b have value true? 

                                                           
1$a is assumed to evaluate to a coverage with a single numeric range field, $b to a coverage with a single Boolean range field. 



OGC Web Processing Service (WPS) defines a Web API 
for remote function invocation, i.e., Remote Procedure Calls 
(RPC) [11]. This principle exists with C since the 1980s and 
lateron with SOAP. Any process to be invoked in the server 
must be defined by the server administrator. The invocation 
syntax in WPS is described through XML documents; the 
actual code executed remains opaque to the invoker. 

Hence, WPS realizes syntactic interoperability: the in-
vocation syntax (function name, parameter number and 
types) is defined whereas the execution semantics is not. 
CPF, on the other hand, establishes semantic interoper-
ability: clients and services based on CPF share the same 
understanding of the filtering and processing. 

B. Technology 

Image processing has a strong history. After using pro-
gramming languages natively libraries emerged encapsulaing 
advanced imaging functionality. With the recent proliferation 
of python libraries in this language have become popular, 
such as xarray for n-D arrays. These are usually limited to 
main memory processing and are not directly usable for Web 
services. Likewise, they require concrete programming and, 
additionally, do not support space and time semantics 
directly. In several language specific support has been added 
for built-in array handling, from APL over Matlab to R. CPF 
is suitable for describing the datacube-related parts and 
define interoperability, up to possibly automatic translation 
across languages and services. 

V. CONCLUSION 

We presented a language for expressing geo datacube 
operations , specifically tailored in its operations to the ISO 
abstract grid coverage model. This allows manipulating 
datacubes of any dimension and with space, time, and other 
axes in a uniform manner, including combination of 
heterogeneous objects for data fusion. 

The first innovation is that, to the best of our knowledge, 
it is the currently only formalized processing model that 
strictly relies on the coverage standards. 

Further, this approach is novel as it abstracts away from 
the usual procedural APIs, but rather offers a high-level, 
declarative language allowing open-ended complexity in the 
requests while focusing on the „what“ rather than on the 
„how“. Similar languages are known on vector data, such as 
SQL Simple Features, so our proposal can be seen as closing 
a gap, thereby making datacubes first-class citizens in the 
conceptual framework world of geographic data. 

The syntax tentatively is shaped along the XQuery 
language – the vision is to integrate data and metadata 
analytics, and many of today’s metadata are in XML. Even 
when changing to JSON, or any other structured metadata 
description model, XQuery still works. Given this generality 
of XQuery we have shaped the CPF syntax to prepare for an 
integration which ultimately should overcome the data / 
metadata divide.  

At the time of this writing the specification is sent out to 
the voting delegations of the participating nations for Draft 
International Standard (DIS) ballot. Should it be accepted 
then only editorial changes will be further possible any more. 

An implementation of CPF is possible on principle. In a 
slightly different syntax One mapping to a concrete standard 

is exemplified in the 19123-3 specification: the OGC WCS 
Core and some extensions are described through the CPF 
language, demonstrating how it can be used to 
unambiguously describe functionality.  

Our hope is that the concepts of this language will help to 
better communicate algorithms and ideas. Different coverage 
processing standards might define their semantics through 
19123-3 making them comparable, possibly even enabling 
cross-translation between them. Further, the systematics of 
coverage processing might guide software implementers in 
the design of their functionality, using whatever interface 
style like function libraries, different languages, etc. 

Future work includes extending the datacube analytics 
expressiveness with AI methods, based on the common basis 
of tensor algebra. Another research direction is to extend 
support for further coverage types, specifically: point clouds 
and meshes. 
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