
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Towards a Model-Driven
Datacube Analytics Language

Peter Baumann
Computer Science & Electrical Engineering

Jacobs University

Bremen, Germany
p.baumann@jacobs-university.de

Abstract—Datacubes form an accepted cornerstone for

analysis (and visualization) ready spatio-temporal data

offerings. Geo datacubes have been standardized since long

under the umbrella concept of coverages, and such data

structures are well understood in concept and practice. This,

however, is not paired by a similar understanding of coverage

analytics.

We present a formal model for datacube analytics which is

based on Linear Algebra, incorporates space and time

semantics, and allows a wide range of common datacube

operations, up to, say, the Discrete Fourier Transform. For

convenience, the formalism is based on a language allowing

expressions of any complexity.

The specification is currently in the avanced adoption

process of ISO for becoming the future 19123-3 standard.

Keywords—datacube, analytics, language, coverage, ISO

I. MOTIVATION

Datacubes introduce function-rich services on spatio-
temporally aligned, homogenized raster data assets typically
coming as sensor, image (timeseries), simulation, and statist-
ics data. Actionable datacubes support analytics through the
paradigm of “any query, any time, on any size” [6] originally
coined by research on Array Databases [7]. Today datacubes
are an accepted cornerstone for providing data ready for
analysis, fusion, and visualization. In particular this is due to
the homogenization of the zillions of scenes and other data
into spatio-temporal units where each one has its common
coordinate system, pixel type, etc. Thanks to the flexibility of
the OGC / ISO / EU INSPIRE coverage standards [8] there is
still sufficient degree of freedom to accommodate missing
data areas in datacubes, regular as well as irregular grids, and
a wide variety of data formats while retaining inter-
operability to allow, for example, simple fusion of datacubes
with different dimensions and coordinate systems.

Given the ever-increasing importance of coverage
services going far beyond mere subsetting there is a strong
need to standardize not only data representation and
exchange, but also the capabilities of services in an
interoperable manner – not the least for the emerging vision
of interoperable automated service mashups.

Datacube query languages establish actionable datacubes
enabling users to ask "any query, any time" without pro-
gramming, and independent from internal storage and
external ingest/delivery data formats. Following this philo-
sophy, 19123-3 is independent from any concrete coverage
encoding format (such as GeoTIFF, NetCDF, etc.) and
concrete processing language (such as python, R,

SQL/MDA, etc.). Likewise, it is not a service, but rather
provides the basis for service concretizations such as those
existing in OGC:WCS GET/KVP, WCS POST/XML, WCS
SOAP, OAPI-Coverages, and OAPI-Processing. In future,
ISO TC211 possibly might establish concrete coverage
services in a forthcoming 19123-4.

However, due to the highly dynamic nature of the field it
is not easy to understand terms, trends, and technologies, and
how they relate or differ. It helps to look at standards where,
centered around the notion of a “coverage”, the main geo
standardization bodies of OGC, ISO, and INSPIRE have
established a mature, agreed, modular data and service model
allowing implementations to differ in the extent of support
while still remaining interoperable. For example, in the Web
Coverage Service (WCS) suite WCS-Core just offers
subsetting and format encoding while on the high end Web
Coverage Processing Service (WCPS) offers a datacube
analytics language.

In this paper, we report about our work on establishing an
ISO standard for the foundations of datacube processing,
based on a language for extraction, filtering, processing,
analytics, and fusion of multi-dimensional geospatial data-
cubes representing, for example, spatio-temporal sensor,
image, simulation, or statistics datacubes. Expressions in this
language accept any number of input datacubes (together
with further common inputs like numbers) to generate any
number of output datacubes or scalar results.

The data model used for geo datacubes is given by the
ISO coverage model as defined in the twin draft standard
19123-1 [5]. A coverage describes mathematical fields
through several – practically induced – techniques, specific-
ally: regular and irregular grids, point clouds, and general
meshes.

The language is functionally defined and free of any side
effects. It has a formal semantics foundation and is minimal:
only two constructs establish all coverage processing: A cov-
erage constructor to build (or derive) a coverage and an agg-
regation operator (called condenser) deriving summary infor-
mation. Further convenience functions are derived from
those.

The language does not define a service API – it is indep-
endent from any particular request and response encoding, as
no concrete request/response protocol is assumed. Hence,
this standard rather acts as the foundation for defining
service standards functionality. Currently such concrete
service definitions exist with OGC Web Coverage Service
(WCS) [4] via GET/KVP, POST/XML, SOAP protocol
bindings, as well as with emerging specifications like OAPI-
Coverages [13] and OAPI-Processes [12].

Supported by European Commission H2020 CENTURION.

The datacube analytics specification has been finalized
and submitted for voting to the national delegations under its
identifier 19123-3. This work is part of ISO plans on further
populating the coverage ecosystem. Fig. 1 shows possible
evolution paths and the position of 19123-3 in it.

Fig. 1. Possible evolution of coverage standards in ISO

For the purpose of this paper we refer to the 19123-1
draft specification as Coverage Fundamentals (CF) and the
19123-3 draft text as Coverage Processing Fundamentals
(CPF).

In its current version CPF supports grid coverages with
index, regular, and irregular axes. In the future it is foreseen
that the standard gets extended so as to address all CF types.

The remainder of this contribution is organised as
follows. In the next section we provide an overview of the
datacube part of the coverage model as a background. After
that, the CPF processing language is introduced in Section 3.
A comparison against the state of the art is provided in
Section 4. Section 5 gives a summary and an outlook.

II. COVERAGES AND DATACUBES

For the reader’s convenience this section gives a brief
informal recap of the CF model, under adoption by ISO as
19123-1. A detailed description is provided in [5].

Following the mathematical notion of a function that
maps elements of a domain (here: spatio-temporal coordin-
ates) to a range (here: “pixel”, “voxel”, etc. values), a cover-
age consists of:

• an identifier which uniquely identifies a coverage in
some context (here: the context of an expression);

• a domain set of coordinate points (expressed in a
common Coordinate Reference System, CRS):
“where in the multi-dimensional space can I find
values?”

• a probing function which answers for each coverage
coordinate in the domain set (“direct position”):
“what is the value here?”

• a range type: “what do those values mean?”

• optional metadata: “what else should I know about
these data?”

The coverage concept encompasses regular and irregular
grids, point clouds, and meshes. In our context, we only
consider multi-dimensional grid coverages which are used to
represent datacubes. CF supports a very general grid concept
where any kind of regular and irregular grids is supported;
Fig. 2 shows some examples.

In an interface-oriented UML specification such a
coverage, on abstract level can be described as in Fig. 3.

Fig. 2. Sample regular and irregular grid structures [5]

Fig. 3. Interface-oriented specification of coverages and grid coverages
[10]

III. A LANGUAGE FOR COVERAGE ANALYTICS

Being on the same conceptual abstraction level as CF, the
CPF likewise is not at implementation level (in particular:
does not define a concrete service), but rather establishes
coverage processing concepts that may serve to conceptual-
ize concretizations, such as the OGC Web Coverage Service
(WCS) API. Actually, core concepts draw on the OGC Web
Coverage Processing Service (WCPS) language; however,
CPF has been stripped from several OGC legacyand lifted to
the abstract CF data model.

In CPF, the following CF axis types are supported:

• A Cartesian (“index”) axis just requires lower and
upper bound (which are of type integer).

• A regular axis which can be described by lower and
upper bounds together with a constant distance, the
resolution.

• An irregular axis which has individual distances,
described by a sequence of coordinates.

The coverage domain set with its axes has a single native
CRS which may allow georeferencing. Additionally, the
underlying grid structure is defined through a Cartesian grid
CRS. Both CRSs have the same dimension, i.e.: number of
axes. In CPF, CRSs are addressed by name in expressions.
Both CF and CPF do not make any assumptions about the
nature of identifying CRSs, but rather treat them as opaque
identifiers.

These concepts are formalized in CPF through so-called
probing functions which extract information from an other-
wise abstract, encapsulated object following the theory of

Abstract Data Types [1]. Table I summarizes representative
probing functions.

A. Processing Expressions

The CPF coverage processing language defines
expressions on coverages which evaluate to ordered lists of
either coverages or scalars (whereby “scalar” here is used as
a summary term of all data structures that are not coverages).
In the sequel, the terms processing expression and query are
used interchangeably.

A CPF coverage processing expression consists the CPF
primitives plus the nesting capabilities, altogether forming an
expression language which is independent from any particul-
ar encoding and service protocol. The semantics of a CPF
expression is defined recursively by indicating, for all
admissible expressions, the semantics which is given by the
probing function output when applied to a coverage-valued
expression.

The basic shape of a CPF query is given by

for v1 in (L1),

 v2 in (L2),
 … ,

 vn in (Ln)

 [let c1 := e1, …, cm := em]

 [where P]
 return E

The Li are lists in the for clause are coverages to which

the corresponding variables v1 are bound in sequence. This

establishes an iteration over these coverages. Having several
variables establishes a nested loop where any number of
covverages can be combined for fusion.

Optional let clause is just for convenience – it allows
for convenient abbreviations of sub-expressions.

Table I. — SELECTION OF COVERAGE PROBING FUNCTIONS

Coverage

characteristic

Probing function for some

coverage C as per CF

Comment

Coverage identifier id(C) as per CF Identifier of the coverage

Coverage native CRS nativeCrs(C) as per CF Native CRS of the coverage

Coverage grid CRS gridCrs(C) as per CF Grid CRS of the coverage

CRS axis list axisList(crs) = (a1,…,ad) for

some d-D CRS crs establishing
this axis sequence

List of all axes of the CRS, in proper sequence

Domain extent of
coverage, in its native
CRS

domainSet(C) as per CF Extent of the coverage in native CRS coordinates

Domain extent of
coverage, in its grid CRS

gridDomainSet(C) as per CF Extent of the coverage in Cartesian grid coordinates, relative to
the coverage’s grid CRS

Range type rangeType(C) as per CF The range type record is described by a list describing its
components in sequence; for the purpose of 190123-3 only
component name and its data type are considered.

Range field name list rangeFieldNames(C)

= (f1, …, fn) with field names fi
Ordered list all of the coverage’s range fields names and their
data types; possible further constituents in a record component
are ignored in this standard, their values are to be defined else-
where (e.g., implementation dependent)

Range values value(C,p) = evaluateC(p),

p∈domainSet(C)
with evaluate() as per CF

Direct Positions can be expressed either in the native or the grid
CRS. We use the standard array notation of C[p] alternatively.

Interpolation interpolation(C) as per CF List of the interpolation method allowed per axis, in axis order

Interpolation associated with a particular axis

Metadata of coverage metadata(C) as per CF a string without further structure nor semantics, seen from a
19123-1 perspective

In the return clause, coverage expression E performs
the analytics. These expressions may contain occurrences of
the variables defined in the for and let clauses. If the result
is scalar it will be returned as ASCII, coverage-valued results
need to be encoded in some suitable data format.

The optional where clause performs filtering: only those

coverages where the filter predicate P evaluates to true are
forwarded for processing the return clause instantiation.

For example, assume availability of coverages A, B, and
C. Then, the following CPF query

for $c in (A, B, C)
return encode($c, "image/tiff")

will produce a result list containing three TIFF-encoded
coverages. In the next example, assume availability of
satellite images A, B, and C and a coverage M acting as a
mask (i.e., with range values of 0 and 1 and the same extent
as A, B, and C). Then, masking each satellite image can be
performed with this query:

for $s in (A, B, C),
 $m in (M)
return encode($s * $m, "image/tiff")

The operations available for building filter and
processing expressions are based on only two primitives, a
coverage constructor and an aggregation operation, called
condenser.

B. Coverage Constructor

A coverage constructor creates a d-dimensional grid cov-

erage for some d≥1 by defining the coverage’s domain set,
range type, range set, and metadata through expressions. This
allows deriving entirely new shapes, dimensions, and values.

The coverage domain set is built from a CRS defining the
multi-dimensional axes and the meaning of coordinates,
including units of measure; indicating the coordinates of the
direct positions, i.e., the points where values sit.

Axis names can be chosen according to the rules of CF; it
is recommended to keep native and grid CRS axis names
disjoint.

A range type expression optionally creates the coverage
range type. In the scope of the embedding CPF condensers
this expression defines the range component names as known
(immutable) variables. Values derived for some such range
component will automatically be cast to the target type of
that range component.

A range set expression creates the coverage range set. A
corresponding scalar expression is evaluated at every direct
position of the coverage’s domain set.

An optional metadata expression creates the coverage
metadata component. As such metadata are not interpreted
by the coverage they are represented as a string which may
contain any character, depending on the character set
supported.

Syntactically, a coverage is built as

coverage id [D] [T] R [M]

with the following constituents. The id parameter is the
new name of the coverage. In a concrete service, the name
may be required to not exist in the service data pool yet. On

this level of abstraction, however, no such requirement is in
order.

The D parameter defines the domain set, through its
constituents CRS, each axis with its type – regular or
irregular – and its constituents such as lower and upper
bound, resolution (if regular), etc. For example, the
following clause defines a 2-D grid with axes Lat and Long.
Both axes are regular with the indicated extent and
resolution. The common CRS defining them is WGS84
which has the EPSG code 4326. Further, interpolation along
both axes is set to linear:

domain set
crs “EPSG:4326” with
 Lat regular (10:30) resolution 0.01
 interpolation linear,
 Long regular (10:30) resolution 0.01
 interpolation linear

A typical range type definition T for 3-band RGB images
is expressed as follows:

range type
 red :integer,
 green:integer,
 blue :integer

The range set definition provides an expression which is
evaluated for each cell („direct position“ in CF terminology)
for determining the value of each cell in the datacube. An
example for such an expression is

range set (integer) $c / 2

Every cell value of the output coverage is given by taking
the corresponding value of the $c coverage, dividing it by 2,
and casting the result to an integer value.

This implicit iteration over all elements defined in the
domain set, i.e., its direct positions, allows for operations that
sometimes are called „embarrassingly parallel“, or local
operations in Tomlin’s Map Algebra [14]. However, the
mechanics of the constructor provides not only the iteration
over all the direct positions, but also the coordinate iteration
variables, available through the axis names. In the following
example the result value for each direct position is
determined from subtracting two adjacent time slices in
coverage $c. In a 3-D x/y/t timeseries datacube this would
effectively determine change:

range set
 $c[date(date-1)] - $c[date(date)]

Note that the axis name serves to identify the axis
addressed and also the variable contents. The syntactic
position guarantees differentiating both positions. Beyond
local operations this allows expressing also Tomlin’s zonal,
focal, and global operations.

The metadata element M, finally, allows associating a
metadata string. As the syntax and semantics of the metadata
remains opaque and unknown in this framework there are no
particular rules on this string – it might be XML, JSON, or
any other structure defined by some concrete standard based
on CPF. In CPF, this might simply be written as

metadata “any metadata contents“

In a fully fledged coverage constructor all these clauses
are present. However, in particular where other coverages are
referenced some details often can be inferred – for example,

if for some given datacube all values simply are halved then
obviously the domain set of the derived cube is that of the
original cube. In many cases this yields very compact
expressions, such as

coverage LogOfCube
range set log($c)

This gives rise to induced expressions: For cell-wise
operations the result coverage is trivially defined through the
input coverage constituents. We simply write the range set
expression and define its semantics through the corresp-
onding coverage constructor. All common arithmetic, comp-
arison, trigonometric, and exponential become immediately
available this way, and additionally „if“ statements, records
access, etc. become defined naturally.

We illustrate these unary, binary, and n-ary induced
operations by a binary addition of two coverages $c and $d
which both need to agree in their domain set – say, axes x
and y – and need to have compatible range types. Then,

$c + $d

is equivalent to

coverage Sum
domain set domainSet($c)
range set
 $c[x(x), y(y)] + $d[x(x), y(y)]

Conversely, by manipulating the domain set while retain-
ing the original coverage values we can define extraction of
sub-coverages. Following the WCS standard [4], we differ-
entiate subsetting into trimming (which reduces the domain
footprint, but keeps the dimension) and slicing (which
reduces the dimension). Then, subsetting can be expressed
by taking the range values of the input coverage at the
reduced domain set of coordinates:

coverage Subset
domain set
 crs crs($c) with
 x index (x0 : x1),
 y index (y0 : y1)
range set
 $c[x(x), y(y)]

This can be simplified to

$c[x(x0:x1), y(y0:y1)]

For some coverage $c with unknown dimension, but with
an axis date a time slice at a particular date can be written as

$c[date(“2021-08-28”)]

In practice, combinations of constructor and condenser
are common.

C. Coverage Condenser

The second fundamental operator is the condenser. It
collapses a coverage into a scalar. On principle, any binary
operation forming a monoid applies; CPF defines addition,
multiplication, max, min, and, and or.

The general shape of the condenser is:

condense op

over name1 axis1(I1),
 …,

 named axisd(Id)

[where P]
using V

The following expression iterates over a 5000x5000
extent of image $c delivering the sum of all values encount-
ered at the Direct Positions.

condense +
over x (0 : 4999), y (0 : 4999)
using $c[x(x), y(y)]

Again, common shorthands can be defined for simplific-
ation, as summarized in Table II.

A timeline diagram can be obtained through a 1-D
expression which aggregates over space while iterating over
time:

coverage AverageTemperature
domain set
 crs “OGC:DateTime” with
 t (domainSet($tCube, Date))
range type f: float
range set
 condense +
 over lat(domainSet($tCube, Lat)),
 lon(domainSet($tCube, Lon))
 using $tCube[Lat(lat),
 Lon(lon),
 Date(t)]

Further, the practically important class of zonal operat-
ions can be expressed. To this end, we first introduce a short-
hand notation for coverages with only Cartesian coordinates.
3x3 matrices can be expressed like this:

coverage Sobel3x3
domain set
 crs “OGC:Index2D” with
 i (-1 : 1), j (-1 : 1)
range type s: integer
range set
 < 1; 2; 1;
 0; 0; 0;
 -1; -2; -1
 >

This matrix can now be used as a filter kernel for edge
detection as used in a Sobel filter:

coverage FilteredImage
domain set
 crs “OGC:Index2D” with
 x index (0 : 5000),
 y index (0 : 5000)
range set
 condense +
 over i (-1 : +1), j (-1 : +1)
 using $c.blue[x(x+i), y(y+j)]
 * Sobel3x3[i(i), j(j)]

D. Further Functions

In addition, common convenience functions relevant for
geo applications are available in the language, such as
scaling and reprojection.

The encode function specifies encoding of a coverage-
valued query result by means of a data format and possible
extra encoding parameters. The decode function, conversely,
evaluates a byte stream passed as parameter to a coverage by
decoding the byte stream. This byte stream must represent a
coverage encoding following CIS 1.1 [8] and its coverage
encoding profiles.

IV. RELATED WORK

A. Standardization

Geo Web services for raster data started with 2D map
rendering with OGC Web Map Service (WMS). This delivers
images suitable for human interpretation, but not data results
that may be perused, e.g., by a GIS analysis tool. Further, no
processing is supported, just selecting predefined colirng
styles.

The emerging OGC Environmental Data Retrieval
(EDR) standard [9] defines some fixed functionality, in the

spirit of (but not to the extent) of OGC WCS. There is only
static functionality, but no flexibility for composing requests
of arbitrary complexity as in CPF.

OGC WCS, conversely, is a data-oriented service extens-
ion, however with requests of fixed, static functionality. One
extension, WCPS, offers a datacube analytics language based
on the concrete coverage data model CIS; CPF is derived
from WCPS and reshaped to be the processing counterpart of
the abstract CF data model of ISO 19123-1.

Table II. — CONDENSER SHORTHANDS

reduceExprdefinition1 Description

add($a) =

condense +

over $p1 (gridDomainSet($a,D1)),

 …,

 $pd (gridDomainSet($a,D1)),

using $a[$p1 , …, $pd]

sum over all points in $a

avg($a) =

add($a) / | gridDomainSet($a) |
average of all points in $a

min($a) =

condense min

over $p1 (gridDomainSet($a,D1)),

 …,

 $pd (gridDomainSet($a,D1))

using $a[$p1 , …, $pd]

minimum of all points in $a

max($a) =

condense max

over $p1 (gridDomainSet($a,D1)),

 …,

 $pd (gridDomainSet($a,D1))

using $a[$p1 , …, $pd]

maximum of all points in $a

count($b) =

condense +

over $p1 (gridDomainSet($b,D1)),

 …,

 $pd (gridDomainSet($b,D1))

where $b[$p1 , …, $pd]

using 1

number of points in $b

some($b) =

condense or

over $p1 (gridDomainSet($b,D1)),

 …,

 $pd (gridDomainSet($b,D1))

using $b[$p1 , …, $pd]

is there any point in $b with value

true?

all($b) =

condense and

over $p1 D1(gridDomainSet($b,D1)),…,$pd

Dd(gridDomainSet($b,D1))

using $b[$p1 , …, $pd]

do all points of $b have value true?

1$a is assumed to evaluate to a coverage with a single numeric range field, $b to a coverage with a single Boolean range field.

OGC Web Processing Service (WPS) defines a Web API
for remote function invocation, i.e., Remote Procedure Calls
(RPC) [11]. This principle exists with C since the 1980s and
lateron with SOAP. Any process to be invoked in the server
must be defined by the server administrator. The invocation
syntax in WPS is described through XML documents; the
actual code executed remains opaque to the invoker.

Hence, WPS realizes syntactic interoperability: the in-
vocation syntax (function name, parameter number and
types) is defined whereas the execution semantics is not.
CPF, on the other hand, establishes semantic interoper-
ability: clients and services based on CPF share the same
understanding of the filtering and processing.

B. Technology

Image processing has a strong history. After using pro-
gramming languages natively libraries emerged encapsulaing
advanced imaging functionality. With the recent proliferation
of python libraries in this language have become popular,
such as xarray for n-D arrays. These are usually limited to
main memory processing and are not directly usable for Web
services. Likewise, they require concrete programming and,
additionally, do not support space and time semantics
directly. In several language specific support has been added
for built-in array handling, from APL over Matlab to R. CPF
is suitable for describing the datacube-related parts and
define interoperability, up to possibly automatic translation
across languages and services.

V. CONCLUSION

We presented a language for expressing geo datacube
operations , specifically tailored in its operations to the ISO
abstract grid coverage model. This allows manipulating
datacubes of any dimension and with space, time, and other
axes in a uniform manner, including combination of
heterogeneous objects for data fusion.

The first innovation is that, to the best of our knowledge,
it is the currently only formalized processing model that
strictly relies on the coverage standards.

Further, this approach is novel as it abstracts away from
the usual procedural APIs, but rather offers a high-level,
declarative language allowing open-ended complexity in the
requests while focusing on the „what“ rather than on the
„how“. Similar languages are known on vector data, such as
SQL Simple Features, so our proposal can be seen as closing
a gap, thereby making datacubes first-class citizens in the
conceptual framework world of geographic data.

The syntax tentatively is shaped along the XQuery
language – the vision is to integrate data and metadata
analytics, and many of today’s metadata are in XML. Even
when changing to JSON, or any other structured metadata
description model, XQuery still works. Given this generality
of XQuery we have shaped the CPF syntax to prepare for an
integration which ultimately should overcome the data /
metadata divide.

At the time of this writing the specification is sent out to
the voting delegations of the participating nations for Draft
International Standard (DIS) ballot. Should it be accepted
then only editorial changes will be further possible any more.

An implementation of CPF is possible on principle. In a
slightly different syntax One mapping to a concrete standard

is exemplified in the 19123-3 specification: the OGC WCS
Core and some extensions are described through the CPF
language, demonstrating how it can be used to
unambiguously describe functionality.

Our hope is that the concepts of this language will help to
better communicate algorithms and ideas. Different coverage
processing standards might define their semantics through
19123-3 making them comparable, possibly even enabling
cross-translation between them. Further, the systematics of
coverage processing might guide software implementers in
the design of their functionality, using whatever interface
style like function libraries, different languages, etc.

Future work includes extending the datacube analytics
expressiveness with AI methods, based on the common basis
of tensor algebra. Another research direction is to extend
support for further coverage types, specifically: point clouds
and meshes.

ACKNOWLEDGMENT

The author is grateful for the many discussions with
Graham Wilkes, Emmanuel Devys, Kathi Schleidt, and many
more experts which has helped shaping the concepts and
clarifying many corner cases and use cases.

REFERENCES

[1] F.L. Bauer, H. Wössner, “Algorithmic Language and Program
Development”. Springer 1982

[2] P. Baumann, “The OGC Web Coverage Processing Service (WCPS)
Standard”. Geoinformatica, 14(4)2010, pp 447-479

[3] P. Baumann, “OGC Web Coverage Processing Service (WCPS)
Language Interface Standard”. OGC document 08-068r3,
https://docs.ogc.org/is/08-068r3/08-068r3.html

[4] P. Baumann, “OGC Web Coverage Service (WCS) Interface Standard
– Core”. OGC document 17-089r1,
http://docs.opengeospatial.org/is/17-089r1/17-089r1.html

[5] P. Baumann, “A General Conceptual Framework for Multi-
Dimensional Spatio-Temporal Data Sets”. Environmental Modelling
and Software (2021), https://doi.org/10.1016/j.envsoft.2021.105096

[6] P. Baumann, D. Misev, V. Merticariu, B. Pham Huu, “Datacubes:
Towards Space / Time Analysis-Ready Data”. In: J. Doellner, M.
Jobst, P. Schmitz (eds.): Service Oriented Mapping - Changing
Paradigm in Map Production and Geoinformation Management,
Springer Lecture Notes, 2018, DOI 10.1007/978-3-319-72434-8_14

[7] P. Baumann, “Language Support for Raster Image Manipulation in
Databases”. Int. Workshop on Graphics Modeling, Visualization in
Science & Technology, Darmstadt/Germany 1992, pp. 236 – 245,
DOI 10.1007/978-3-642-77811-7_19

[8] P. Baumann, E. Hirschorn, J. Maso: Coverage Implementation
Schema (CIS), version 1.1.1. OGC document 09-146r6,
docs.opengeospatial.org/is/09-146r8/09-146r8.html

[9] M. Burgoyne, D. Blodgett, C. Heazel, C. Little, “OGC API -
Environmental Data Retrieval Standard”.
http://docs.ogc.org/DRAFTS/19-086.html

[10] Hidden ISO, “Coverage Processing Fundamentals”,
https://external.ogc.org/twiki_public/pub/CoveragesDWG/Coverages
BigPicture/ISO_19123-3_2021-09-01.docx

[11] M. Mueller, B. Pross, “OGC® WPS 2.0.2 Interface Standard
Corrigendum 2”. OGC document 14-065,
http://docs.opengeospatial.org/is/14-065/14-065.html

[12] N..n., “OGC API - Processes”.
https://github.com/opengeospatial/ogcapi-processes

[13] N.n., “OGC API - Coverages”.
https://github.com/opengeospatial/ogcapi-coverages

[14] C. Tomlin, “Map algebra: one perspective”. Landscape and Urban
Planning, Volume 30, Issues 1–2, 1994, pp. 3-12

[15] W3C: “XQuery 1.0: An XML Query Language (Second Edition)”.
https://www.w3.org/TR/2010/REC-xquery-20101214

