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Software 
Process and Project 
Management

Instructor: Peter Baumann

email: pbaumann@constructor.university

tel: -3178

office: room 88, Research 1

Sommerville, Chapters 4, 17

Pressman

Everyone knew 
exactly what 
had to be done 
until someone 
wrote it down!
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Project Sucess/Failure Rate

[CHAOS Report, Standish Group]
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Where Time Really Is Spent In Practice

Source: unknown
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Activity Network
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Activity Timeline (aka Gantt Chart)
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Henry L. Gantt (1861-1919)
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 Estimating difficulty of problems (hence, costs)

 Productivity  !~ #people working on a task

 The unexpected always happens contingency

 Adding people to a late project makes it later

Potential Scheduling Problems
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Waterfall Model

 Process model

= Software life cycle

 Challenge: 

Difficult to accommodate change Inflexible 

• Lack of stable requirements

• Changing requirements

• Increased understanding

• Unforeseen difficulties
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The Incremental Model
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Agile Methods

 Customer involvement 

• ...to provide & prioritise new system 
requirements + to evaluate iterations

 Incremental delivery

• Priorities from customer

 People, not process

• team to develop own ways of working

 Embrace change

• Expect requirements to change

• design to accommodate change

 Maintain simplicity

• software and development process 

• actively eliminate complexity



11Software Engineering – © P. Baumann

Extreme Programming

 XP = 'extreme' variation of iterative development, very small increments

• New versions may be built several times per day

• Increments ~every 2 weeks

• All tests for every build; 
only accepted if all successful

 Rationale:

• Conventional: design for change

• anticipating changes reduces costs later

• XP: not worthwhile, cannot anticipate

• constant code improvement

• user involvement in dev team

Select user stories

for this release

Plan release

Develop / 

integrate / test

Release

Break down:

stories tasks

Evaluate
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Agile methods: Appraisal

 Team members may be unsuited to intense involvement of agile methods

 Developers need to be experienced, not too different in expertise

 can be difficult to keep interest of customers involved in process
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Scrum

[PierreSelim / Wikipedia]
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Wrap-Up: Project Management

 Planning + coordination + monitoring is a must, even though change 

happens

• common activities: specification, design, implementation, testing/validation, 

evolution

• Gantt chart: Work packages, tasks, deliverables, milestones

 Different Management approaches

• Classical „plan ahead“ vs Agile „embrace change“

 Project Manager = first management level

• Deep technical knowledge + leadership qualifications

• Core personal assets: Multitasking, nonlinear, self-motivated


