
1Software Engineering – © P. Baumann

Software
Process and Project
Management

Instructor: Peter Baumann

email: pbaumann@constructor.university

tel: -3178

office: room 88, Research 1

Sommerville, Chapters 4, 17

Pressman

Everyone knew
exactly what
had to be done
until someone
wrote it down!

2Software Engineering – © P. Baumann

Project Sucess/Failure Rate

[CHAOS Report, Standish Group]

4Software Engineering – © P. Baumann

Struggling to

understand

requirements

30%

documentation

10%

design (8% std)

10%

Technical

difficulties

30%

Testing

5%

implementation

15%

Struggling to

understand

requirements

30%

documentation

10%

design

10%

Technical

difficulties

30%

Testing

5%

implementation

15%

Where Time Really Is Spent In Practice

Source: unknown

5Software Engineering – © P. Baumann

Activity Network

start

T2

M3
T6

Finish

T10

M7T5

T7

M2
T4

M5

T8

4/7 /03

8 days

14/7 /03 15 days

4/8/03

15 days

25/8/03

7 days

5/9/03

10 days

19/9/03

15 days

11/8/03

25 days

10 days

20 days

5 days
25/7 /03

15 days

25/7 /03

18/7 /03

10 days

T1

M1 T3

T9

M6

T11

M8

T12

M4

6Software Engineering – © P. Baumann

Activity Timeline (aka Gantt Chart)

Task (Work package)

Subtask

Progress

Milestone

Dependency

Henry L. Gantt (1861-1919)

7Software Engineering – © P. Baumann

 Estimating difficulty of problems (hence, costs)

 Productivity !~ #people working on a task

 The unexpected always happens contingency

 Adding people to a late project makes it later

Potential Scheduling Problems

8Software Engineering – © P. Baumann

Waterfall Model

 Process model

= Software life cycle

 Challenge:

Difficult to accommodate change Inflexible

• Lack of stable requirements

• Changing requirements

• Increased understanding

• Unforeseen difficulties

9Software Engineering – © P. Baumann

The Incremental Model

increment #n

communication

reqs

design

impl

integration

operation

delivery of

increment #n

communication

reqs

design

impl

integration

operation

increment #1

delivery of

increment #1

Project calendar time

F
un

ct
io

na
lit

y
&

 fe
at

ur
es

10Software Engineering – © P. Baumann

Agile Methods

 Customer involvement

• ...to provide & prioritise new system
requirements + to evaluate iterations

 Incremental delivery

• Priorities from customer

 People, not process

• team to develop own ways of working

 Embrace change

• Expect requirements to change

• design to accommodate change

 Maintain simplicity

• software and development process

• actively eliminate complexity

11Software Engineering – © P. Baumann

Extreme Programming

 XP = 'extreme' variation of iterative development, very small increments

• New versions may be built several times per day

• Increments ~every 2 weeks

• All tests for every build;
only accepted if all successful

 Rationale:

• Conventional: design for change

• anticipating changes reduces costs later

• XP: not worthwhile, cannot anticipate

• constant code improvement

• user involvement in dev team

Select user stories

for this release

Plan release

Develop /

integrate / test

Release

Break down:

stories tasks

Evaluate

12Software Engineering – © P. Baumann

Agile methods: Appraisal

 Team members may be unsuited to intense involvement of agile methods

 Developers need to be experienced, not too different in expertise

 can be difficult to keep interest of customers involved in process

13Software Engineering – © P. Baumann

Scrum

[PierreSelim / Wikipedia]

14Software Engineering – © P. Baumann

Wrap-Up: Project Management

 Planning + coordination + monitoring is a must, even though change

happens

• common activities: specification, design, implementation, testing/validation,

evolution

• Gantt chart: Work packages, tasks, deliverables, milestones

 Different Management approaches

• Classical „plan ahead“ vs Agile „embrace change“

 Project Manager = first management level

• Deep technical knowledge + leadership qualifications

• Core personal assets: Multitasking, nonlinear, self-motivated

