
1Software Engineering – © P. BaumannSoftware Engineering – © P. Baumann

Documentation

Instructor: Peter Baumann

email: pbaumann@constructor.university

tel: -3178

office: room 88, Research 1

Credits:

Richard Clegg

"Real programmers don't document.

If it was hard to write,

it should be hard to understand."

2Software Engineering – © P. Baumann

Roadmap: Types of Documentation

 Internal documentation

• What: comments in your code

• Level of detail: local (particular statements, variables, …)

 External programmer documentation

• What: for other programmers who would work with your code

• Level of detail: global, implementation directed (module dependencies, interfaces,

anything else of interest);

where necessary: details (algorithms, data structures, restrictions, …)

 User documentation

• What: the manual for the poor fools who will be using your code

• Level of detail: global, usage directed

3Software Engineering – © P. Baumann

Internal (Inline) Documentation, or:

How to Write Good Comments

 Does your comment help your reader understand the code?

 Are you writing a comment just because you know that "comments are
good"?

 Is the comment something that the reader could easily work out for
themselves?

 Don't be afraid to add a reference instead of a comment for tricky things

 See history.js

4Software Engineering – © P. Baumann

Some Common Bad Comments

i= i+1; /* Add one to i */

for (i= 0; i < 1000; i++) { /* Tricky bit */

.

. Hundreds of lines of obscure uncommented code here

.

}

int x,y,q3,z4; /* Define some variables */

int main()

/* Main routine */

while (i < 7) { /*This comment carries on and on */

5Software Engineering – © P. Baumann

How Much To Comment?

 Just because comments are good doesn't mean that you should comment

every line

 Too many comments make your code hard to read

 Too few comments make your code hard to understand

 Comment only where you couldn't trivially understand what was going on

by looking at the code for a minute or so

6Software Engineering – © P. Baumann

What Should I Always Comment?

 Every file to say what it contains

 Every function – what input does it take and what does it return

• Preconditions

• Postconditions (eg, error return values)

 Every variable apart from "obvious" ones

• i,j,k for loops, FILE *fptr don't require a comment

• but int total; might

 Every struct/typedef

• unless it's really trivial

It does - not for the fptr,

but for the file purpose!

(see top)

7Software Engineering – © P. Baumann

Other Rules for Comments

 Comment if you do something "weird" that might fool other programmers

• In particular: "tricks", optimizations

• Aka natural penalty: the more tricky, the more to comment…

 If a comment is getting long consider referring to other text instead

• external documentation

 Don't let comments interfere with how the code looks

• e.g. make indentation hard to find

 Keep comments up to date!

• Outdated comments are worse than no comment at all: misleading

8Software Engineering – © P. Baumann

How Comments Can Make Code Worse

while (j < ARRAYLEN) {

printf ("J is %d\n", j);

for (i= 0; i < MAXLEN; i++) {

/* These comments only */

for (k= 0; k < KPOS; k++) {

/* Serve to break up */

printf ("%d %d\n",i,k);

/* the program */

}

/* And make the indentation */

}

/* Very hard for the programmer to see */

j++;

}

9Software Engineering – © P. Baumann

External (Programmer) Documentation

 Tells other programmers what your code does

 The aim is to allow another programmer to use & modify your code

without having to read &understand every line

 Here just ONE way of doing it – everyone has their own rules

• Most large companies have their own standards for doing this

 Global structure:

• Stage 1: overview & purpose

• Stage 2: the mechanics

• Stage 3: the gory details: globals

• Stage 4: the gory details: locals

10Software Engineering – © P. Baumann

External Documentation (Stage 1)

 What is your code supposed to do?

 How does your code work generally?

 What files does it read from or write to?

• Purpose only, not internals

 What does it assume about program input?

 What algorithms does it use?

11Software Engineering – © P. Baumann

External Documentation (Stage 2)

 Describe the general flow of your program

• no real need for a flowchart though

• Diagrams can help

 Explain any complex algorithms which your program uses

or refer to explanations elsewhere

• e.g. "I use vcomplexsort, see Knuth page 45 for details"

12Software Engineering – © P. Baumann

External Documentation (Stage 3)

 If you use multi-file programming explain what each file contains

 Explain any struct which is used a lot in your program

 explain (and justify) any global variables you have chosen to use

13Software Engineering – © P. Baumann

External Documentation (Stage 4)

 Describe every "major" function in program:

what arguments passed, what returned

• you decide what is "major" function

• …depends on level of detail you wish

 Consider functions doing "the real work"

• longest or most difficult

14Software Engineering – © P. Baumann

User Documentation

 This is documentation for the user of your program (aka "user manual“)

 Entire books have been written on the subject!

• Sometimes it is written before your code is even ready to be tested

• For highly structured and complex projects it is likely that you will have to adapt your

code to match the user manual

• It has to be written from the point of view of the end users of your program

• Many, many more considerations and guidelines not covered here…

15Software Engineering – © P. Baumann

Recap: Types of Documentation

 Internal documentation

• Inline comments in code

 External programmer documentation

• Separate doc (Word, github, …) about code

 User documentation

• Doc for end users: functionality, user interface, error messages, …

16Software Engineering – © P. Baumann

Appendix: Tool Support

 C++:

• Doxygen, doc++

 Java:

• Javadoc

 JavaScript:

• JSDoc, DocumentJS, ...

 General:

• doc-to-help: generate online help + word documentation from same source

