
1Software Engineering – © P. Baumann

“Better Prevent Than Cure”:
Defensive Programming

Instructor: Peter Baumann

email: pbaumann@constructor.university

tel: -3178

office: room 88, Research 1

Credits:

Fresh Sources Inc.

Cannot find REALITY.SYS.

Universe halted.

2Software Engineering – © P. Baumann

3Software Engineering – © P. Baumann

Big Data in Industry

 Industry 4.0: integration of production & IT

• Optimising value chain & life cycle

 Automobiles

• Networked with co-traffic, traffic lights, ...  PB a day

• BMW iDrive:

• Onboard 40+ sensors, 30+ antennas

• Gbit Ethernet, up to 30 Gb/s

• 5G  BMW Cloud

 Airplanes

• A380: 1b LoC

• Per engine: 1 TB / 3 min

• LHR  JFK = 640 TB

[Kristen Nicole]

[Airbus]

4Software Engineering – © P. Baumann

Software Crisis

 difficult to write useful & efficient computer programs in the required time

 Reason: rapid increases in computer power, complexity of problems that

could be tackled

 Consequences:

• Projects running over-budget, over-time

• Software inefficient, of low quality, not meeting requirements

• Projects unmanageable, code difficult to maintain

• Software was never delivered

5Software Engineering – © P. Baumann

Software Extinction Events

 1950s: assembler code not manageable

• symbolic PLs: COBOL, FORTRAN

 1960s: 100,000s LoC not manageable

• structured programming [Djikstra et al]:

• Bad stmts forbidden; blocks to enter at top & leave at bottom

• disentangled code  easier to read + test + maintain; measurable!

• 1980s: multi-millions LoC not manageable

– object orientation, UML

• 2000s: proliferating Web services not manageable

– service-oriented architecture: functional building-blocks accessible over standard

Internet

6Software Engineering – © P. Baumann

Spaghetti Code

#define BAR(x,y) (x)=2*(y)

#define FOO(x) BAR(index,x)

foo.h

#include "foo.h"

int index = 42;

int f()

{ int i;

for (i=0; i<10; i++)

{ FOO(i);

weirdStuff(index,i);

}

}

foo.c

Image: Wikipedia

– check it out!

Now some "purist"

renames i to index ...

7Software Engineering – © P. Baumann

Software Crisis: Response

 Structured programming

• Functions, blocks...all is better than goto!

• Avoid spaghetti code

 Object-oriented programming

 Defensive programming

• Better check twice

– in particular across interfaces!

• Runtime checks, safer PLs

 Correctness proofs

 Systematic testing

Image: Wikipedia

– check it out!

8Software Engineering – © P. Baumann

Defensive Programming

 Prevention is better than cure, therefore:

 Defensive Programming intends “to ensure the continuing function of a
piece of software in spite of unforeseeable usage of said software”

• [http://en.wikipedia.org/wiki/Defensive_programming]

 Good design yields better product

• Defending against errors avoids lengthy debugging sessions

 Good design should be evident in code

• Code is executable; comments aren‟t

• Key design checkpoints should be checked by your code

9Software Engineering – © P. Baumann

Defensive Programming: Example

[http://en.wikipedia.org/wiki/Defensive_programming]

10Software Engineering – © P. Baumann

Invariants

 Conditions that do not vary

• “Design mileposts” in your code

 Loop invariants

• True at beginning of each loop iteration (and after termination if all went well)

 Class invariants

• True before and after each method call

 Method invariants

• Pre- and post conditions

• Part of “Design-by-contract”

11Software Engineering – © P. Baumann

Loop Invariant Example

 Program for computing the factorial of (integer) n:

 Precondition: n >= 1

 Postcondition: fact == n!

Credit:

Alden Wright, U of Montana

unsigned int factorial(unsigned int n)

{

unsigned int i = 1, fact = 1;

while (i != n)

{

i++;

fact *= i;

}

return fact;

}

Unsafe

– in practice, better use

while (i < n)

12Software Engineering – © P. Baumann

 Termination:

• When loop terminates, i = n

• This plus the loop invariant implies
postcondition.

 Precondition necessary!



 The loop invariant can be:

• fact = i!

 Initialization:

• Before first iteration: i=1, fact=1 => fact=i!

 Maintenance:

• Let i , fact denote values on previous iteration

• Assume fact =i„!, prove fact=i!

• Proof:
i = i +1 and fact = fact *i // after loop body
fact = i !
fact *i = i ! * i // multiplying both sides by i
fact = (i-1)! * i
fact = i!

Loop Invariant Example (contd.)

uint factorial(uint n)

{ uint i = 1, uint fact = 1;

while (i != n)

i++, fact *= i;

return fact;

}

13Software Engineering – © P. Baumann

Class Invariants

 All constructors should place their object in a valid state

 All methods should leave their object in a valid state

• pre-condition and post-condition together should guarantee this

• Better than just blind coding and testing!

 Example: Rational class:

• denominator > 0

• gcd(num,den) = = 1

14Software Engineering – © P. Baumann

Method Invariants

 “Design by Contract”

• Introduced by a Frenchman working in Switzerland living in California

 Methods are contracts with the user

 Users must meet pre-conditions of the method

• Index in a certain range, for example

 Method guarantees post-conditions

15Software Engineering – © P. Baumann

 Users must meet method's pre-

conditions:

• “s is a string with length between 0 and
SMAX-1”

• “n is an integer between 0 and NMAX”

 drawback:

frequent “still all ok?” checks

• But simple sequence, no deep “if”
nesting

Design by Contract: Example

int myFunc(char *s, int n)
{

int result = RC_OK;

if (s = = NULL)
result = RC_INPUT_ERROR;

else if (strlen(s) >= SMAX)
result = RC_INPUT_ERROR;

else if (n < 0 || n > NMAX)
result = RC_INPUT_ERROR;

if (result = = RC_OK)
{

do_whatever_is_to_be_done;
}

return result;
}

16Software Engineering – © P. Baumann

Enforcing Invariants
– aka “Error Handling”

 Several techniques available, best usage depends…

 assertions = force-terminate program

• For programmer errors that don‟t depend on end user, non-public member functions

 exceptions = break flow of control (aka goto)

• For pre-conditions on public member functions

 return codes = data-oriented, keep flow of control

• Post-conditions are usually a method‟s output

17Software Engineering – © P. Baumann

 Brute force method

 Never ever use it in production!!!

• (would you like it in your editor?)

 assert() macro

• around since old C days

 if argument is false:

• prints expression, file, and line number

• then calls abort()

 Handling:

• Enabled by default

• Can turn off with NDEBUG:

• #define NDEBUG
#include <cassert>

Assertions

void MyVector::push_back(int x)
{

if (nextSlot == capacity)

grow();

assert(nextSlot < capacity);

data[nextSlot++] = x;

}

18Software Engineering – © P. Baumann

 Interrupt regular flow of control,

ripple up calling hierarchy

• Until matching try/catch embrace

• Otherwise abort program

 Exceptions are classes!

• throw() instantiates exception object

• can have parameters

• catch sensitive per exception type

 Can have multiple catch()

• catch(...) sensitive to
any exception type

Exceptions

char *myFunc() throw (Error)

{

char *myPtr = malloc(size);

if (myPtr == NULL)

throw new Error(ERR_BAD_ALLOC);

return myPtr;

}

try

{

s = myFunc();

}

catch (Error &e)

{

// error log, file emergency close, ...

}

19Software Engineering – © P. Baumann

int myFunc(string s, int n)
{

int result = RC_OK;

if (s = = NULL)
result = RC_INPUT_ERROR;

else if (strlen(s) >= SMAX)
result = RC_INPUT_ERROR;

else if (n < 0 || n > NMAX)
result = RC_INPUT_ERROR;

if (result = = RC_OK)
{

do_whatever_is_to_be_done;
}

return result;
}

 Methods have a return parameter

• For otherwise void result,
it carries only success information

• If method has regular result:
reserve otherwise unused value

• NULL for strings, -1 for int, …

 It‟s an interface property

-- document clearly!

• …and check in caller code!

 Strongly recommended:

single-return functions

• use a local result variable!

Return Codes

20Software Engineering – © P. Baumann

Excursion: Another Real-Life Example

 documenting this takes longer than writing a clear version of the code.

 no error handling at all!

 How to do better?

for (count = 0, *templateList = myClass_New (templateCount, char *);

*templateList

&& count < templateCount

&& ((*templateList)[count] = aux_Duplicate (templates[count]));

count++);

21Software Engineering – © P. Baumann

Structured Programming

 Structured programming

= component-level design technique [Djikstra et al, early 1960s]

which uses only small set of programming constructs

 Principle: building blocks to enter at top & leave at bottom

• Good: sequence(“;“); condition; repetition

• Bad: (computed) goto; break; continue; ...

 Advantage: less complex code  easier to read + test + maintain

• Measurable quality: small complexity (e.g., cyclometric)

• ...but no dogma: if it leads to excessive complexity, violating can be ok

22Software Engineering – © P. Baumann

Structured Programming: Loops

Simple
loop

Nested
Loops

Concatenated

Loops Unstructured
Loops

24Software Engineering – © P. Baumann

Apple ’goto fail’ Bug [more]

 xxstatic OSStatus SSLVerifySignedServerKeyExchange (

SSLContext ∗ctx, bool isRsa, SSLBuffer signedParams,
uint8 t ∗signature, UInt16 signatureLen)

{

OSStatus err;

. . .

if ((err = SSLHashSHA1. update(&hashCtx , &serverRandom)) != 0)

goto fail;

if ((err = SSLHashSHA1. update(&hashCtx , &signedParams)) != 0)

goto fail;

goto fail;

if ((err = SSLHashSHA1. final(&hashCtx , &hashOut)) != 0)

goto fail;

. . .

fail:

SSLFreeBuffer(&signedHashes);

SSLFreeBuffer(&hashCtx);

return err;

}

• 2012 – 2014: Apple iOS SSL/TLS library

falsely accepted faulty certificates

• Impersonation, man-in-the-middle attacks

use beautifiers!!!

https://www.imperialviolet.org/2014/02/22/applebug.html

25Software Engineering – © P. Baumann

Excursion: Expressing Control Flow

 Real-life example!

 Nesting-bad.cc: original code

• how easy to follow & change?

 Nesting-good.cc: modified code

• less lines, less columns, less nesting, less getting lost

26Software Engineering – © P. Baumann

Code Guides

 Code guide

= set of rules to which programmers must (should) adhere

• Within company or project

 Twofold purpose:

• Have uniform style

= less surprises = better learning curve for newbies

• Codify best practice

= what is acknowledged to be advantageous

 Varying, individual, maybe not all convincing...yet: stick with it!

 Let‟s see an example code guide…

27Software Engineering – © P. Baumann

Core Coding Rules

 Reflect before typing!

• why are you doing what you are doing?

• what is the best approach?

 Be pedantic

• As far as ever possible, make it foolproof

• No monkey tricks

• Document!

 Design cost-aware

• is it worth the effort?

• Is it maintainable?

28Software Engineering – © P. Baumann

Tool Support: What Language?

 “Certain programming languages, including C/C++, enable bugs because of how

the language was designed” – NIAG SG254

• memory unsafety fixes: Microsoft 70%, Apple 66%, Android 90%, Chromium 70%

 Safety coding rules constraining allowable language constructs for:

• Worst case memory & stack usage & analysis; Data coupling & control coupling analysis;
Heap fragmentation; Code coverage & test coverage analysis; Object code analysis;
memory & thread safety; Portability

 Overcoming C/C++: Ada, Rust, ...

• Correctness: “if it compiles, then it works”

• Strong typing semantics as well as the “ownership” and “borrowing” concepts

• Null pointer safety, thread safety

• High-level, zero-cost abstractions and language features resulting in clear & concise code

29Software Engineering – © P. Baumann

Summary

 Defensive Programming

= practises to avoid bugs upfront

 Helpful:

think in terms of assertions / contracts / pre- and postconditions / ...

• Document and check preconditions for all public interfaces

• Document postconditions (results, exceptions, ...) and keep that promises

 How to write unmaintainable code:

http://mindprod.com/jgloss/unmain.html

 Not addressed here: security

• Signed config files & executables

http://mindprod.com/jgloss/unmain.html

