C>ONSTRUCTOR
UNIVERSITY

“Better Prevent Than Cure”:
Defensive Programming

Instructor: Peter Baumann Credits:
email: pbaumann@constructor.university Fresh Sources Inc.
tel: -3178

office: room 88, Research 1 Cannot find REALITY.SYS.

Universe halted.

Software Engineering — © P. Baumann 1

Big Code - Lines of Code

Average iPhone app

Hubble Space Telescope
Windows 3.1 (1992)

Control software for US military drone
Windows NT 3.1 (1993)

HD DVD Player Xbox

World of Warcraft Server
Google Chrome

Windows NT 4 (1996)

MySQL

Boing 787 Flight Software

F35 Fighter jet

Microsoft Office 2013

Large Hadron Collider
Facebook

US Army Future Combat System
MacOS X 4.1 Tiger

Average high-end car

1.3+ million iPhone apps,

1.3+ itlt!]iﬁn Angmid a

source: WWHALIN

S = 1?
rmatmn|sEeButiful_netfuisualizatmns;miIIion-Iines-n -c0

= 50.000 lines

= 2 million lines

= 2.5 million lines
= 3.5 million lines
= 4.5 million lines
= 4.5 million lines
= 5.5 million lines
= 6.5 million lines
= 11 million lines

= 12 million lines

= 14 million lines

= 23 million lines

= 44 million lines

= 50 million lines

= 61 million lines

= 63 million lines

= 85 million lines

= 100 million lines

OELII|Dn lines

;

C>ONSTRUCTOR
UNIVERSITY

Big Data in Industry

= |ndustry 4.0: integration of production & IT

[Kristen Nicole]

 Optimising value chain & life cycle

= Automobiles

 Networked with co-traffic, traffic lights, ... = PB a day
e BMW iDrive:

* Onboard 40+ sensors, 30+ antennas
 Gbit Ethernet, up to 30 Gb/s
« 5G — BMW Cloud

= Airplanes

» A380: 1b LoC

* Perengine: 1 TB/3 min
+ LHR —JFK=640TB

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Software Crisis

= difficult to write useful & efficient computer programs in the required time

= Reason: rapid increases in computer power, complexity of problems that
could be tackled

= (Consequences:

* Projects running over-budget, over-time
« Software inefficient, of low quality, not meeting requirements
* Projects unmanageable, code difficult to maintain

e Software was never delivered

Software Engineering — © P. Baumann 4

C>ONSTRUCTOR
UNIVERSITY

Software Extinction Events

= 1950s: assembler code not manageable
 symbolic PLs: COBOL, FORTRAN

= 1960s: 100,000s LoC not manageable

e structured programming [Djikstra et al]:
* Bad stmts forbidden; blocks to enter at top & leave at bottom

 disentangled code — easier to read + test + maintain; measurable!
» 1980s: multi-millions LoC not manageable
— object orientation, UML
+ 2000s: proliferating Web services not manageable

— service-oriented architecture: functional building-blocks accessible over standard
Internet

Software Engineering — © P. Baumann 5

C>ONSTRUCTOR
UNIVERSITY

Spaghetti Code

foo.h

#define BAR(x,y) (x)=2*(y)
#define FOO (x) BAR (index, x)

foo.c

#include "foo.h"
int index = 42;

int £()
{ int 1i;
for (i=0; i<10; i++)
{ FOO (1) ; Image: Wikipedia
weirdStuff (index,i) ; — check it out!
}
} Now some "purist"

renames i to index ...

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Software Crisis: Response

Structured programming
 Functions, blocks...all is better than goto!

 Avoid spaghetti code

Object-oriented programming

Defensive programming

 Better check twice
— in particular across interfaces!

e Runtime checks, safer PLs

Image: Wikipedia
— check 1t out!

Correctness proofs

= Systematic testing

Software Engineering — © P. Baumann 7

C>ONSTRUCTOR
UNIVERSITY

Defensive Programming

= Prevention is better than cure, therefore:

= Defensive Programming intends “to ensure the continuing function of a
piece of software in spite of unforeseeable usage of said software”

* [http://en.wikipedia.org/wiki/Defensive_programming]

= (Good design yields better product

 Defending against errors avoids lengthy debugging sessions

= (Good design should be evident in code

* (Code is executable; comments aren’t

 Key design checkpoints should be checked by your code

Software Engineering — © P. Baumann 8

C>ONSTRUCTOR
UNIVERSITY

Defensive Programming: Example

int risky_programming(char *input){
char str[1000+1];
/o
strcpy(str, input);
/o

} int secure_programming(char *input){
char str[1000];
/...
strncpy(str, input, sizeof(str)):
str[sizeof(str) - 1] = '\0';
/...

[http://en.wikipedia.org/wiki/Defensive_programming]

Software Engineering — © P. Baumann 9

C>ONSTRUCTOR
UNIVERSITY

Invariants

Conditions that do not vary
e “Design mileposts” in your code

Loop invariants

« True at beginning of each loop iteration (and after termination if all went well)

Class invariants
» True before and after each method call
Method invariants

 Pre- and post conditions
 Part of “Design-by-contract”

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Loop Invariant Example

: : . Credit:
= Program for computing the factorial of (integer) n: Alden Wright, U of Montana

unsigned int factorial(unsigned intn)

{
unsigned inti=1, fact=1;
Unsafe
— In practice, better use i
while (i < n) T
» }
= Precondition: n >=1 return fact:
}

= Postcondition: fact == n!

Software Engineering — © P. Baumann

C>ONSTRUCTOR

UNIVERSITY
Loop Invariant Example (contd.)
= The loop invariant can be: = Termination:
e fact=1l * When loop terminates, i = n

e * This plus the loop invariant implies

o Before first iteration: i=1, fact=1 => fact=i! -
= Precondition necessary!

= Maintenance:

» Leti,fact denote values on previous iteration

o =il =il
Assume fact =i'l, prove fact=il uint factorial(uint n)

 Proof: S - _ 1.
i=i +1and fact = fact *i // after loop body { um.t | _,1’ uint fact = 1;
fact =i | while (i = n)
fact *i=i!1*i /[multiplying both sides by i i++, fact *=i:
fact = (--1)! " return fact;
fact = il } ’

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Class Invariants

= All constructors should place their object in a valid state

= All methods should leave their object in a valid state

 pre-condition and post-condition together should guarantee this

 Better than just blind coding and testing!

= Example: Rational class:
* denominator > 0

* gcd(num,den) == 1

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Method Invariants

= “Design by Contract”

* Introduced by a Frenchman working in Switzerland living in California

= Methods are contracts with the user

= Users must meet pre-conditions of the method

* Index in a certain range, for example

= Method guarantees post-conditions

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Design by Contract: Example

= Users must meet method's pre- TR S)

conditions: {
, , , int result = RC_OK;
« ‘“sis a string with length between 0 and _
SMAX-1" if (s ==NULL)
e , , result = RC_INPUT_ERROR,;
* “nis aninteger between 0 and NMAX" else if (strlen(s) >= SMAX)
result = RC_INPUT_ERROR,;
= drawback: else if (n < 0 || n > NMAX)
frequent “still all ok?” checks GBI 2
_ . if (result == RC_OK)
« But §|mple sequence, no deep “if {
nesting do_whatever_is_to_be done;
}
return result;
}

Software Engineering — © P. Baumann

C>ONSTRUCTOR

Enforcing Invariants UNIVERSITY
— aka “Error Handling”

Several techniques available, best usage depends...

assertions = force-terminate program

 For programmer errors that don’t depend on end user, non-public member functions

exceptions = break flow of control (aka goto)

 For pre-conditions on public member functions

return codes = data-oriented, keep flow of control

 Post-conditions are usually a method’s output

Software Engineering — © P. Baumann

C>ONSTRUCTOR

_ UNIVERSITY
Assertions
= assert () macro void MyVector::push_back(int x)
 around since old C days {
if (nextSlot == capacity)
= if argument is false: grow();

* prints expression, file, and line number S WAL = G e f
o data[nextSlot++] = x;

» then calls abort () }

= Handling:
 Enabled by default

e (Can turn off with NDEBUG:

 #define NDEBUG = Brute force method
#include <cassert>

= Never ever use it in production!!!

 (would you like it in your editor?)

Software Engineering — © P. Baumann

C>ONSTRUCTOR

UNIVERSITY
Exceptions
= Interrupt regular flow of control, try
ripple up calling hierarchy {
s = myFunc();
« Until matching try/catch embrace }
 Otherwise abort program catch (Error &e)
{
= EXxceptions are classes! Il error log, file emergency close, ...
 throw () instantiates exception object }
* can have parameters char *myFunc() throw (Error)

« catch sensitive per exception type {
char *myPtr = malloc(size);
= Can have multiple catch () if (myPtr == NULL)
throw new Error(ERR_BAD_ALLOC);

e catch(...) sensitive to return myPtr;

any exception type

Software Engineering — © P. Baumann

Return Codes

= Methods have a return parameter

 For otherwise void result,
it carries only success information

* |f method has regular result:
reserve otherwise unused value
« NULL for strings, -1 for int, ...

It's an interface property
-- document clearly!

e ...and check in caller code!

Strongly recommended:
single-return functions

e use a local result variable!

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

int myFunc(string s, intn)

int result = RC_OK;
if (s ==NULL)
result = RC_INPUT_ERROR;
else if (strlen(s) >= SMAX)
result = RC_INPUT_ERROR;
else if (n <0 || n > NMAX)
result = RC_INPUT_ERROR;

if (result = = RC_OK)
{

}

return result;

do_whatever_is_to _be done;

C>ONSTRUCTOR
UNIVERSITY

Excursion: Another Real-Life Example

for (count = 0, *templateList = myClass_New (templateCount, char *);
*templateList
&& count < templateCount
&& ((*templateList)[count] = aux_Duplicate (templates[count]));
count++);

= documenting this takes longer than writing a clear version of the code.
= no error handling at all!

= How to do better?

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Structured Programming

= Structured programming
= component-level design technique [Djikstra et al, early 1960s]
which uses only small set of programming constructs

= Principle: building blocks to enter at top & leave at bottom

T

» Good: sequence(®;"); condition; repetition
 Bad: (computed) goto; break; continue; ...

= Advantage: less complex code —> easier to read + test + maintain

» Measurable quality: small complexity (e.g., cyclometric)
 ...but no dogma: if it leads to excessive complexity, violating can be ok

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Structured Programming: Loops

Simple
loop

Nested
Loops

|

Concatenated
Loops Unstructured

Loops

Software Engineering — © P. Baumann

C>ONSTRUCTOR

UNIVERSITY
) 1L
Apple 'goto fail’ Bug [more]
static OSStatus SSLVerifySignedServerKeyExchange (
SSLContext *ctx, bool isRsa, SSLBuffer signedParams,
uint8 t *signature, UIntl6é signaturelen)
{
OSStatus err;
if ((err = SSLHashSHAl. update (&hashCtx , &serverRandom)) != 0)
goto fail;
if ((err = SSLHashSHAl. update (&hashCtx , &signedParams)) !'= 0)
goto fail;
goto fail;
if ((err = SSLHashSHAl. final (&hashCtx , &hashOut)) != 0)
goto fail;
fail: . .
SSLFreeBuffer (&signedHashes) ; * 2012 -2014: Apple iOS SSL/TLS I|brary
SSLFreeBuffer (s§hashCtx) ; falsely accepted faulty certificates
return err; * Impersonation, man-in-the-middle attacks

use beaultifiers!!!

Software Engineering — © P. Baumann

https://www.imperialviolet.org/2014/02/22/applebug.html

C>ONSTRUCTOR
UNIVERSITY

Excursion: Expressing Control Flow

= Real-life example!
= Nesting-bad.cc: original code
 how easy to follow & change?

= Nesting-good.cc: modified code

* lesslines, less columns, less nesting, less getting lost

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Code Guides

= Code guide
= set of rules to which programmers must (should) adhere

 Within company or project

= Twofold purpose:

 Have uniform style
= less surprises = better learning curve for newbies

 Codify best practice
= what is acknowledged to be advantageous

= Varying, individual, maybe not all convincing...yet: stick with it!

= |et's see an example code guide...

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Core Coding Rules

= Reflect before typing!

 why are you doing what you are doing?
 what is the best approach?

= Be pedantic

* As far as ever possible, make it foolproof
« No monkey tricks
e Document!

= Design cost-aware

e s it worth the effort?
* [s it maintainable?

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Tool Support: What Language?

= “Certain programming languages, including C/C++, enable bugs because of how
the language was designed” — NIAG SG254

« memory unsafety fixes: Microsoft 70%, Apple 66%, Android 90%, Chromium 70%

= Safety coding rules constraining allowable language constructs for:

» Worst case memory & stack usage & analysis; Data coupling & control coupling analysis;
Heap fragmentation; Code coverage & test coverage analysis; Object code analysis;
memory & thread safety; Portability

= QOvercoming C/C++: Ada, Rust, ...

» Correctness: “if it compiles, then it works”

« Strong typing semantics as well as the “ownership” and “borrowing” concepts

 Null pointer safety, thread safety

 High-level, zero-cost abstractions and language features resulting in clear & concise code

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Summary

= Defensive Programming
= practises to avoid bugs upfront

= Helpful:
think in terms of assertions / contracts / pre- and postconditions / ...
« Document and check preconditions for all public interfaces

» Document postconditions (results, exceptions, ...) and keep that promises

= How to write unmaintainable code:
http://mindprod.com/jqloss/unmain.html

= Not addressed here: security

 Signed config files & executables

Software Engineering — © P. Baumann

http://mindprod.com/jgloss/unmain.html

