
1Software Engineering – © P. Baumann

Compiling and Linking
C / C++ Programs

Instructor: Peter Baumann

email: pbaumann@constructor.university

tel: -3178

office: room 88, Research 1

2Software Engineering – © P. Baumann

CPU @ Work

 ...watch your code like you never have seen it before!

3Software Engineering – © P. Baumann

Compile/Link Steps Overview

C/C++
source

header
files

pre-
processor

source
code

compiler
object
code

linker

archives

executable

cc –E x.c cc –S x.c cc –c x.c

4Software Engineering – © P. Baumann

File Extension Conventions

 C source code .c

 C include file .h

 C++ source file .cc , .C, .cxx, .c++, .cp, .cpp

 C++ header file .hh, .hpp

 Object file (relocatable) .o

 Executable no extension (Windows: .com, .exe)

 Library

• static .a

• dynamic .so

5Software Engineering – © P. Baumann

The C Preprocessor

 Purpose:

• Define commonly used constants, code fragments, etc.

• Conditional compilation (code activation depending on external settings)

 Main mechanism: replace by textual substitution

• No idea about semantics (parentheses, semicolons, ...) !!

• Does not follow C syntax

 Preprocessor directives

• #include

• #define

• #if / #ifdef

• …plus more

#define X 1

const int x = 1;

6Software Engineering – © P. Baumann

Using Preprocessor Directives

 Conditional compilation

• Include guard in header files, eg in mystdio.h:

#ifndef _MYSTDIO_H_

#define EOF (-1)

#define NULL 0L

#define _MYSTDIO_H_

#endif _MYSTDIO_H_

 Include files

• #include <stdio.h> – taken from predefined location

• #include “myclass.h“ – taken from local directories

 Where to find include files?

• Standard locations: /usr/include, /usr/local/include, ...

• Specified locations cc –I/home/project/include

 Can also pass definitions

• cc –DCOMPILE_DATE=\“`date`\“ -DDEBUG

7Software Engineering – © P. Baumann

Common Preprocessor Pitfall

 Use parentheses!!!

• bad:

#define mult(a,b) ((a)*(b))

main()

{

printf(“(2+3)*4=%d\n“, mult(2+3,4));

}

printf(“(2+3)*4=%d\n“, 2+3*4);

#define mult(a,b) a*b

main()

{

printf(“(2+3)*4=%d\n“, mult(2+3,4));

}

printf(“(2+3)*4=%d\n“, ((2+3)*(4)));

• good:

8Software Engineering – © P. Baumann

The C(++) Compiler

 Task: Generate (relocatable) machine („object“) code from source code

 Relocation: code can sit at different places in address space

 Address space classified into „segments“

• Code, text, data, ...

 Note: OS (with HW support) uses this to implement user address space

• Actual main memory address = base address + relative address

• Base address kept in segment register, added dynamically by CPU

• Security: program cannot access base register ("priviledged mode"),

hence cannot address beyond its segment limits

9Software Engineering – © P. Baumann

 Contain code for a program fragment (module)

• Machine code, constants, size of static data segments, ...

 $ nm rasserver_main.o

0000000c D clientTimeOut

U __cxa_allocate_exception

U __cxa_begin_catch

U __cxa_end_catch

U __cxa_free_exception

U __cxa_throw

00000004 B debugOutput

U free

U getenv

00000120 B globalHTTPPort

00000000 T main

U memset

Object Files

or objdump

10Software Engineering – © P. Baumann

 Module server:

Variable sema allocated in data segment

 Module client:

functions obtain sema address by

• Module server offset
+ local address sema

 Cross-module addressing rules:

• (no modifier) = locally allocated, globally accessible

• static = locally allocated, locally accessible

• extern = allocated in other compilation unit

External Functions & Variables

int sema = 0;

int serverBlock()

{

if (sema==0)

sema = 1;

return sema;

}

extern int sema;

int clientBlock()

{

if (sema==0)

sema = 1;

return sema;

}

 Why is this wrong?

• extern int sema = 1;

11Software Engineering – © P. Baumann

Name Mangling

 Problem: classes convey complex naming, not foreseen in classic linkage

• Classes, overloading, name spaces, ...

• Ex: MyClass1::myFunc()
MyClass2::myFunc()

• But only named objects in files, flat namespace

 Solution: name mangling

• Compiler modifies names to make them unique (prefix/suffix)

• Ex: Transaction::begin()

 _ZN13r_Transaction5beginENS_8r_TAModeE

 Every compiler has its individual mangling algorithm!

• Code compiled with different compilers is incompatible

13Software Engineering – © P. Baumann

The Linker/Loader

 Task: generate one executable file from several object and library files

• Read object files

• Resolve addresses from (relocatable) code

• Link runtime code (start/exit handling!)

• Add all code needed from libraries

• If required: establish stubs to dynamic libraries

• Write executable code into file, set magic number, etc.

 cc, g++, etc. have complex logics inside

• can silently invoke linker, don't link themselves!

• Common shorthand: cc –o x x.c

 Ex: ld –o x /lib/crt0.o x.o -lc

John R. Levine:

Linkers and Loaders.

Morgan Kaufmann, 1999

14Software Engineering – © P. Baumann

Address Space: Stack, Heap & Friends

Refs: iTecNote, C++ memory mgmt

https://itecnote.com/tecnote/stack-and-heap-locations-in-ram/
https://www.youtube.com/watch?v=ZLpBmej_9UQ

15Software Engineering – © P. Baumann

What It Really Looks Like

cc –v x.c

cc1 ... x.c ... -o /tmp/ccWs4dqa.s

as ... -o /tmp/cckBDoD2.o /tmp/ccWs4dqa.s

collect2 ... –o x /lib/ld-linux.so.2 \\

crt1.o crti.o crtbegin.o /tmp/cckBDoD2.o

-lgcc -lgcc_eh -lc -lgcc -lgcc_eh

crtend.o crtn.o

16Software Engineering – © P. Baumann

 By default, executable contains symbol tables

• Function names, addresses, parametrization

• Static variables

• ...some more stuff

 Disadvantages:

• Allows reverse engineering (gdb!)

• Substantially larger code files

 Before shipping: strip executables

• file rasserver

rasserver: ELF 32-bit LSB executable, Intel 80386, version

1 (SYSV), for GNU/Linux 2.2.5, dynamically linked (uses

shared libs), not stripped

• strip rasserver

Strip

17Software Engineering – © P. Baumann

 Library = archive file containing a collection of object files

• Code fragments (classes, modules, ...)

• ar rv libxxx.a file1.o file2.o ...

 Object files vs. Libraries

• Object file linked in completely, from library only what is actually needed

 Static vs. Dynamic

• Static library: code is added to the executable, just like object file; not needed after linkage

• Dynamic library: only stub linked in, runtime system loads; needed at runtime (version!)

 Naming conventions (Linux)

• Static libraries: libxxx.a

• Dynamic libraries: libxxx.so

• link with: ld ... –lxxx

Libraries (Archive Files)

19Software Engineering – © P. Baumann

 How to find my dynamic libraries?

• LD_LIBRARY_PATH variable, similar to PATH: set before program start

 How to know about use of dynamic libraries?

• $ ldd rasserver

linux-gate.so.1 => (0xffffe000)

libstdc++.so.5 => /usr/lib/libstdc++.so.5 (0x40028000)

libm.so.6 => /lib/tls/libm.so.6 (0x400e5000)

libgcc_s.so.1 => /lib/libgcc_s.so.1 (0x40128000)

libc.so.6 => /lib/tls/libc.so.6 (0x40130000)

libresolv.so.2 => /lib/libresolv.so.2 (0x4029c000)

Dynamic Libraries

20Software Engineering – © P. Baumann

 OS:

• Open file

• Look at first page:

magic number, segment sizes, etc.

• Allocate segments

(code, runtime stack, heap, ...)

• Read code file into code segment

• Set up process descriptor

(external resources, limits, ...)

• Pass control to this process

• Handle system calls

• Terminate program,

free process slot and resources

 Application program:

• Set up runtime environment
(argv/argc, ...)

• Call main()

• On system calls, interrupts, etc.:
pass control to OS

• Upon exit(),
or main()‘s return,
or a forced abort:
clean up (close file descriptors, sockets, ...),
pass back to OS

Schematic Program Run

21Software Engineering – © P. Baumann

Summary

 To create executable program, you must perform:

• Preprocess – textually expands definitions, condition-guarded code pieces

• Compile – translates source code into relocatable machine code („object code“)

• Link – bind object files and archives into executable program

cc –o x x.c

cpp x.c x.cpp

cc –o x.o –c x.cpp

ld –o x /lib/crt0.o x.o -lc

=

