C>ONSTRUCTOR
UNIVERSITY

Compiling and Linking
C / C++ Programs

Instructor: Peter Baumann

email: pbaumann@constructor.university
tel: -3178
office: room 88, Research 1

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

CPU @ Work

= _..watch your code like you never have seen it before!

Software Engineering — © P. Baumann 2

Compile/Link Steps Overview

C/C++ pre-
source processor

source

code
\/_

cc —E x.c

archives

cCc —S X.C

CC —C X.C

C>ONSTRUCTOR
UNIVERSITY

executable
-

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

File Extension Conventions

= (source code .C
= Cinclude file h
= C++ source file .cc, .C, .cxx, .ct++, .cp, .cpp
= C++ header file .hh, .hpp
= Obiject file (relocatable) .0
= Executable no extension (Windows: .com, .exe)
= Library
 static a
. dynamic S0

Software Engineering — © P. Baumann 4

C>ONSTRUCTOR
UNIVERSITY

The C Preprocessor

= Purpose:

 Define commonly used constants, code fragments, etc.
 Conditional compilation (code activation depending on external settings)

= Main mechanism: replace by textual substitution

 No idea about semantics (parentheses, semicolons, ...) !!
« Does not follow C syntax #define X 1

= Preprocessor directives const int x = 1;

e #include

* #define
 #if / #ifdef
e ...plus more

Software Engineering — © P. Baumann 5

C>ONSTRUCTOR
UNIVERSITY

Using Preprocessor Directives

#ifndef MYSTDIO H
.. . #define EOF (-1)
Conditional compilation #define NULL OL

. : . _ #define MYSTDIO H
* Include guard in header files, eg inmystdio.h: | #endif MYSTDIO H

Include files M

* #include <stdio.h> — taken from predefined location

* #include “myclass.h™ -taken from local directories

Where to find include files?

o Standard locations: /usr/include, /usr/local/include, ...
 Specified locations cc -I/home/project/include

Can also pass definitions
°* CC -DCOMPILE_DATE=\“ “date"\“ -DDEBUG

Software Engineering — © P. Baumann 6

C>ONSTRUCTOR
UNIVERSITY

Common Preprocessor Pitfall

= Use parentheses!!!

e bad: #define mult(a,b) a*b
main ()

{
printf(“(2+3) *4=%d\n"“, mult(2+3,4));

}

printf(“(2+3) *4=%d\n“, 2+3*4) ;

e good:

#define mult(a,b) ((a)* (b))
main ()

{
printf(“(2+3) *4=%d\n“, mult(2+3,4));

}

printf(“(2+3)*4=%d\n", ((2+3)*(4)));

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

The C(++) Compiler

Task: Generate (relocatable) machine (,object”) code from source code

Relocation: code can sit at different places in address space

Address space classified into ,segments”

e Code, text, data, ...

Note: OS (with HW support) uses this to implement user address space

 Actual main memory address = base address + relative address
 Base address kept in segment register, added dynamically by CPU

 Security: program cannot access base register ("priviledged mode"),
hence cannot address beyond its segment limits

Software Engineering — © P. Baumann 8

C>ONSTRUCTOR
UNIVERSITY

Object Files

= Contain code for a program fragment (module)

» Machine code, constants, size of static data segments, ...

rasserver main.o

00Oc D clientTimeOut

U cxa allocate exception
cxa begin catch

cxa end catch

cxa free exception

debugOutp
free
getenv
globalHTTPPort
main

U memset

Software Engineering — © P. Baumann 9

00000004

or objdump

00000120
00000000

HWaCWwWwacQad

C>ONSTRUCTOR
UNIVERSITY

External Functions & Variables

= Module server: S

Variable sema allocated in data segment
int serverBlock ()

= Module client: ?f : 0)
. . 1l sema==
functions obtain sema address by sema = 1:
* Module server offset return sema;
+ local address sema }
= (Cross-module addressing rules: extern int sema;

 (no modifier) = locally allocated, globally accessible int clientBlock ()

 static = |ocally allocated, locally accessible {
 extern = allocated in other compilation unit if (sema==0)
o sema = 1;
= Why is this wrong? return sema;
* extern int sema = 1; }

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Name Mangling

= Problem: classes convey complex naming, not foreseen in classic linkage

 Classes, overloading, name spaces, ...

« Ex: MyClassl::myFunc ()
MyClassZ::myFunc ()

 But only named objects in files, flat namespace

= Solution: name mangling

 Compiler modifies names to make them unique (prefix/suffix)

o EX: Transaction: :begin ()
= _ZN13r Transaction5beginENS 8r TAModeE

= Every compiler has its individual mangling algorithm!

» Code compiled with different compilers is incompatible

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

The Linker/Loader

= Task: generate one executable file from several object and library files

» Read object files

Resolve addresses from (relocatable) code John R. Levine:

Link runtime code (start/exit handling!) Linkers and Loaders.
Morgan Kaufmann, 1999

Add all code needed from libraries

If required: establish stubs to dynamic libraries

Write executable code into file, set magic number, etc.

= CC, g++, etc. have complex logics inside

« can silently invoke linker, don't link themselves!
e Common shorthand: ce -0 x x.c

= EXX 1d -0 x /lib/crt0.o x.0 -1lc

Software Engineering — © P. Baumann

C>ONSTRUCTOR

UNIVERSITY
Address Space: Stack, Heap & Friends
writable; not executable StaCk I :\:I);n:og;zi‘l‘::;tomatically"
I
|
writable; not executable Dyna"“c Data Managed by programmer
(Heap)
writable; not executable Static Data Initialized when process starts
Read-only; not executable Literals Initialized when process starts
Read-only; executable Instructions Initialized when process starts

Refs: iTecNote, C++ memory mgmt

Software Engineering — © P. Baumann

https://itecnote.com/tecnote/stack-and-heap-locations-in-ram/
https://www.youtube.com/watch?v=ZLpBmej_9UQ

var, const chan *filename, unsigned long line. void *ptr, size _t size)

What Rga.lly Lo

RE
[—v
[

MALLOC CALL DEBUG

Lirealloc nl’l % RC/_h\J_ f:’ODII
D _ME alls to realloc()“%d\n". realloc_count));

D MEM(({"Variable %s (%8p —> %lu) at %sH6lu\n", var, ptr, (unsigned long) size. filename, |
f g NL LL) {
I -lkfr[= (void *) libast_malloc(__FILE__, _LINE__, size):

emp = (void *) realloc{ptr. size);
’ A BSERT: RVAL(temp 's NULL, ptr);
LA (DEBUG. LEVEL >= DEBUG MEM){
== == “"memrec_chg var(&malloc_rec, var, filename, line, ptr, temp, size);

4 “*rht char*fitename, unsigned long line, size t count, size
... X.¢c ... -o /tmp/ccWs4dga.s
as ... -o /tmp/cckBDoD2.o /tmp/ccWs4ddga.s 3
collect2 ... -o x /lib/1ld-linux.so.2 \\ i, fi
crtl.o crti.o crtbegin.o /tmp/cckBDoD2.o
-lgcc -lgcc_eh -1lc -1lgcc -lgcc_eh
crtend.o crtn.o

-

SiZe)

\L{termp t= NULL f"-J'..hLlfl oast_irereturn (e RyAL(t
EL >= DEBUG MEM){ L . IG_LEVEL
(&mallec T FJIrJ..t‘ ¥ne, temp. sipgccadd F ol bl

C>ONSTRUCTOR
UNIVERSITY

Strip

= By default, executable contains symbol tables

 Function names, addresses, parametrization
o Static variables
« ..some more stuff

= Disadvantages:

 Allows reverse engineering (gdb!)
 Substantially larger code files

= Before shipping: strip executables

 file rasserver
rasserver: ELF 32-bit LSB executable, Intel 80386, wversion
1 (SYSV), for GNU/Linux 2.2.5, dynamically linked (uses
shared l1libs), not stripped

* strip rasserver

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Libraries (Archive Files)

= Library = archive file containing a collection of object files

» Code fragments (classes, modules, ...)

e ar rv libxxx.a filel.o file2.0 ...

= QObiject files vs. Libraries

» Object file linked in completely, from library only what is actually needed

= Static vs. Dynamic

« Static library: code is added to the executable, just like object file; not needed after linkage
 Dynamic library: only stub linked in, runtime system loads; needed at runtime (version!)

= Naming conventions (Linux)

o Static libraries; 1ibxxx . a

e Dynamic libraries: 1ibxxx . so
e linkwith:1d ... -lxxx

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Dynamic Libraries

= How to find my dynamic libraries?

LD _LIBRARY PATH variable, similarto PATH: set before program start

= How to know about use of dynamic libraries?

e $ 1ldd rasserver
linux-gate.so.1l => (0xf£f££fe000)
libstdec++.s0.5 => /usr/lib/libstdc++.s0.5 (0x40028000)
libm.so.6 => /lib/tls/libm.so.6 (0x400e5000)
libgcc _s.so.l => /lib/libgcc_s.so.1l (0x40128000)
libc.so.6 => /lib/tls/libc.so.6 (0x40130000)
libresolv.so.2 => /lib/libresolv.so.2 (0x4029c000)

Software Engineering — © P. Baumann

Schematic Program Run

» Openfile

 Look at first page:
magic number, segment sizes, etc.

 Allocate segments
(code, runtime stack, heap, ...)

» Read code file into code segment

» Set up process descriptor
(external resources, limits, ...)

» Pass control to this process
* Handle system calls

» Terminate program,
free process slot and resources

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Application program:

 Set up runtime environment
(argv/argc, ...

 Callmain ()

» On system calls, interrupts, etc.:
pass control to OS

 Uponexit (),
ormain () ‘s return,
or a forced abort:
clean up (close file descriptors, sockets, ...),
pass back to OS

C>ONSTRUCTOR
UNIVERSITY

Summary

= To create executable program, you must perform:

» Preprocess— textually expands definitions, condition-guarded code pieces
« Compile - translates source code into relocatable machine code (,object code)
e Link — bind object files and archives into executable program

CPpP X.C X.Cpp
CC -0 X.0 —C X.Cpp

1d -o x /1lib/crt0.0 x.0 -1lc

CcCC -0 X X.C

Software Engineering — © P. Baumann

