C>ONSTRUCTOR
UNIVERSITY

"Plan? Who needs a plan?"
Introduction to UML

Instal

-

Instructor; Peter Baumann

email: pbaumann@constructor.university
teli -3178 Excellent work! But maybe we
office: room 88, Research 1 should get a little more detailed here...?

Software Engineering — © P. Baumann 1

C>ONSTRUCTOR
UNIVERSITY

What is UML?

= Whatis UML?

» "The UML (Unified Modeling Language)
is the [OMG] standard language
for specifying, visualizing, constructing, and
documenting all the artifacts of a software system.”

g(—- =

 Synthesis of notations by Grady Booch,
Jim Rumbaugh, Ivar Jacobson, and many others
* Rational, Objectory, et al, ...now IBM

.

R

= diagram perspectives

» Conceptual, specification, implementation

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Diagram Types Overview

= Main diagram types, according to ,80/20 rule:

 Use Case Diagram (functional)
* Activity Diagram (behavioral)
 Class Diagram (structural)

» State Diagram (behavioral)
 Sequence Diagram (behavioral)

= Further, not addressed here:

 Object Diagram (structural), Collaboration Diagram (structural), Package Diagram
(structural), Deployment Diagram (structural)

* Interaction Diagram ::= Collaboration Diagram | Sequence Diagram

Software Engineering — © P. Baumann 3

C>ONSTRUCTOR
UNIVERSITY

Use Case Diagrams

= use case = chunk of functionality, not a software module

e Should contain a verb in its name

= actor = someone or some thing interacting
with system under development

» Aka role in scenario

Request Course Roster

= Visualize relationships L
between actors and Maintain Schedule
use cases

Billing System Maintain Curriculum

= capture high-level alternate
scenarios, get customer agreement (early !)

Software Engineering — © P. Baumann 4

C>ONSTRUCTOR

UNIVERSITY
[]
Use Case Diagrams: Larger Example
[}
Online Shopping System
View ltems
<<Service>
Authentication
Registered
Customer
Make Purchase
Identity Provider
Web Custom ,
Checkout /K
Credit Payment
Service
Client Register
New
Customer
Paypal

creately

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Activity Diagrams

= Represents the overall flow of control

= Graphical workflow of activities and actions

* like flow chart, but user-perceived actions (business model)

Registrar Professor
= Create 8 ®
curriculum

Create
catalog

it fork/join)

Open
registration

[Registration time period expired TranSition

Close

graen quard

I@ 6

C>ONSTRUCTOR
UNIVERSITY

Sequence Diagrams

Displays object interactions arranged in a time sequence

= (Can be from user’s perspective!

* good for: showing what's going on o
and driving out requirements when
interacting with customers 1: 1ill in info

2: submit

= How many SDs? Rule of thumb: 9| add sdert 1o mah 101

4: add student

5: are you open?

« for every basic flow of every use case

6. add student

« for high-level, risky scenarios

= Useful for designer and customer to answer the question:
,What objects and interactions will | need to accomplish the functionality
specified by the flow of events?*

Software Engineering — © P. Baumann 7

C>ONSTRUCTOR

UNIVERSITY
Sequence Diagrams: Larger Example
Admin Login Branch list Dept list EMP's list Server
i_ Ask id &pwd ; i
Verify() »
< Acknowledg:H‘ -
| Check hralich listt istnre
s " = >
:‘[nfurmatinn >H< '
:* s
? Check tlilept list ’L stc;:re >
; Infnrr(:iatiun J‘ :
I Checic emp's list : Store
; |
i Back . T_L
< :

[lucidchart]

-

Software Engineering — © P. Baumarin

C>ONSTRUCTOR

UNIVERSITY
Activity vs Sequence Diagrams?
Activity diagram: Sequence diagram:
= Granularity: user-perceived actions = Granularity: actors + system components
= Emphasis on internal state transitions = Emphasis on component interaction

Registrar Professor

Create
curriculum

ot stion
foan
Create

— 1: ill in Info
2. submit

Pll:cb.o::?lworg 3; add student to math 101

4: add student

Open 5: are you open?
registration

[Registration time period expired] 6: add student

Close
registration

Q
Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

State Transition Diagrams

= show life history of a given class

= use for classes that typically have a lot of dynamic behavior

 Sequence Diagram: class that’s on a lot of sequence diagrams, getting and sending a
lot of messages is candidate

Add student[count<10]

Add Student /
Initialization Setcount=0
Open

enlry; Regester student
a: Incremment count

do: Inftialize cour se

Cancel
Cancel [count=10] *

Cancaled

do; Notity registered students

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Class Diagrams

= (lass = collection of objects with common structure,
common behavior, common relationships, and common semantics

= Displayed as box with up to 3 compartments:

 Name
 List of attributes (aka state variables)

ScheduleAlgorithm

RegistrationForm

 List of operations

RegistrationManager

= (Class modeling elements include:

» (Classes with structure + behavior

RegistrationUser
Student

* Relationships

Professor

 Multiplicity and navigation indicators CourseOffering
* Role names

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Class Diagrams: (Instance) Relships

= Models that two objects can “talk”

= Association — bi-directional connection between classes
» “l can send you a message because if I'm associated with you, | know you're there.”

= Aggregation — stronger form: ,has a"“
* R.between a whole and its parts

RegistrationForm ScheduleAlgonthm

= Dependency — weaker form S

* “need your services, _ sismoduicuese, Bt
but | don’t know that you exist.”

RegistratonUser

Student

= Quatrani: ,typically first make
everything an association,
lateron refine" Counseonenng

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Class Diagrams: Multiplicities, Navigation

= Multiplicity numbers & intervals denote number of instances
that can/must participate in relationship instance

 For both ends
of relationship edge
* 0.1 (may have one)
1 (must have one)
* 0.%or* (may have many) ,
« 1.%(has at least one) ot ol

RegistrationUser

ReglstratonForm ScheduleAlgorithm

RegistratonManager

= Arrow head to denote:
traversable only this
direction

Professor

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Class Diagrams: Inheritance

= [nheritance = relation between subclass and superclass

= Subclass instances have

* all properties specified
in superclass

RegistratonForm ScheduleAlgonthm

* plus the specific ones
defined with the subclass

RegistratonManager

= Also called ,is-a" i

K]
Professor

CourseOffering

locstion

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Class Diagrams: Larger Example

ualberta.cmput 301wl R 11.FoodBook. mode l

{2 FModel <V> & Redip g e
& mstance RecpesDisanage | * - u-lbmmunpunox-l:ll,roodaoommnnom|
P
P sncdicions monpoes
& aiiionsi oM L
ot
[rem——
4 " a setiestonce
1 & serartacipen
°
. p acoweter | o polinproliven. Kacips
(] 7 sy =
Jr— senerComrebes Deomeretinr | 8.1 0.1 - dfcosersiie
T & resrotrian [T er— — O SecverController |
& youn e o matance SanerCosrelle
o i vehin vaarch and o
wchanyes Wlarmation b
e {7 ServerClient Pt
-
| & mrtance SenarChem sarverCient
o Mpches MTpCSem
| cwewe 00| ® Neiper Chasiaiper
B! el <
{9 Redpe :
- I’ anerClan
bes
01 | npadane
2 — n
.. Racye vary View 214 4oy Acthty o
(9 ingredient o Arod e f;ﬁ«ﬂ.n.e'.:
it oy S5y |
e Ciogedant = |
o @ neme: Saring camimeranene .
e | e wne veney O Returncode et
v |
e ot refacted ™, b the 03t B4 peurending resdabiling,
o wim R R R S e ot |
bt . -
* | - phos e & H ca.ualtierta.c mmwnuZ | |
B! e o i |
& photo wonsborms htafor-2 [0.1 x| 01 0.1 | -recioetsphegiior 2 1
o Vet et 1071 [‘Gredpeppiicatior | / G ingredients
aviat, duvets
/’ o ot D -)
; e B
{ ®
I "
Searchacann b
& © SearchActivity Lo
betll J & wrhest (c]
renarfacoe = s mRaciper

? 8 et

agietes pattarn - of contreliars, DAManagers, and the SarverChest are tingietens J

Software Engineering — © P. Baumann

a0y a1 Mans

vpdats

Saacchactnat,

sccenad fram

SearihFeronsictan,

"G SearchResultsActivity

atrchAganl

0.1 searerraritacin.

sccaned from

i
|

O R e

© Oidracye

[P
| | riredone

accossed feom

accond el | - sttngretiomts
1

ststacaancomn

acceriné e

° o

ArBesrchra A
114t b

e
Activits |

accenied by)
(rstanet e

NN, p—

© Omn
° o

O

ceRecaehcingy
or

7
2!

"G edinphotos |

C>ONSTRUCTOR
UNIVERSITY

Re-lterating...

= UML = several diagram types to capture different aspects of sw system

 Structural, functional, behavioral

= Mutual interrelations

* use them to do consistency & plausibility cross checking!

= Fine so far? Let's go on...

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Outlook: xUML

(subset of) UML + executable semantics + timing rules

Approach: software development method + abstract language

Advantages:

 High-level description serves as documentation
« Translation: platform-independent models (PIM) — platform-specific models (PSM)

Note: Generalizations always notated as {complete, disjoint} < DBWS

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Outlook: DSLs

= Alternative to UML for describing systems :
domain-specific modelling languages (DSLs)

» UML considered (too) complex (general-purpose), software biased
= Ex: SysML = general-purpose modelling language
for systems engineering applications [sysml.org]

« UML dialect for hardware, information, processes, personnel, facilities

» EX: aerospace, defense, automotive, ...

= Rule of thumb:;

» UML better for enterprise apps (millions of possible directions)

» DSLs better for embedded systems (focused app domain & paths)

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Wrap-Up

= UML industry standard
for visually describing all aspects during software life cycle

» Use Case Diagram, Activity Diagram, Sequence Diagram, Class Diagram, State Diagram, ...

= More work in the beginning (= before coding starts),
but will pay off in
 Better design (less flaws, more consistency)
» Fewer costly surprises late at integration / customer testing time
 Better plannable

 Higher customer satisfaction, better career

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Caveat: Symbology Interpretation

,revision cloud® common in mechanical engineering

/7 - e
™ I ; ,"' S - e il \

4,600, 1100 0\, 100!

% <
/ 4 \ KITCHEN~)
."éj [SF 40 ;._zl{;:%
/ ;1 t /

7 | 1

V//‘ \\ B e J/’\/

|
7 A

[autodesk.blogs.com]

Software Engineering — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Caveat: Symbology Interpretation

= revision cloud® common in mechanical engineering

[autodesk.blogs.com]

Software Engineering — © P. Baumann

