
1Software Engineering – © P. Baumann

Requirements Engineering

Instructor: Peter Baumann

email: pbaumann@constructor.university

tel: -3178

office: room 88, Research 1

Sommerville, Chapters 6, 7

2Software Engineering – © P. Baumann

Overview

 User vs system requirements

 Functional vs non-functional requirements

 Wrap-up and practical hints

"If I asked customers what they want they would have said a faster horse."

-- Henry Ford

3Software Engineering – © P. Baumann

 Negotiation

• Determine each stakeholder's ―win

conditions‖, negotiate ―win-win‖

 Requirements management

• Specification write-up

• Validation, eg review mechanism:

Errors; clarification need; missing

information; inconsistencies (major

problem!); conflicting / unrealistic

requirements

• Document versioning!

Schematic Requ Eng Procedure

 Inception — ask questions

• basic problem understanding;

domain language & implicit

knowledge!

• Identify stakeholders;

recognize multiple points of view!

• Establish trustful communication &

collaboration between customer &

client;

they will test your competence initially!

 Elaboration

• create analysis model that identifies

data, function and behavioral

requirements

[Pressman]

4Software Engineering – © P. Baumann

Requirements Engineering

 Requirements engineering = The process of eliciting

• the services that the customer requires from a system and

• the constraints under which it operates and is developed

 Requirements = descriptions of the system services and constraints

that are generated during the requirements engineering process

• may range from high-level abstract statements

to detailed formalized functional specifications

functions

rules

5Software Engineering – © P. Baumann

Types of Requirements

 User requirements

• Statements in natural language + diagrams

of the system's services and its operational constraints

• Written for customers, must use their language and mental models

 System requirements

• A structured document setting out detailed descriptions

of the system‘s functions, services and operational constraints

• Defines what should be implemented so may be part of a contract between client and

contractor

• Must be concise in their technical effects

6Software Engineering – © P. Baumann

User Requirements

 Must be understandable by users who don‘t have

detailed technical knowledge

 defined using natural language, tables and diagrams

 However, with NL there is a danger of:

• Lack of clarity – Precision vs difficulty to read

• Requirements confusion – Functional and non-functional

requirements tend to be mixed-up

• Requirements amalgamation – different requirements

expressed together

 UML is your friend!

7Software Engineering – © P. Baumann

Specification Techniques

 Natural language

• Ambiguous; over-flexible; lack of modularisation

 Structured language specifications

• standard templates; limited terminology expressiveness + aka uniformity

 Form-based (tabular) specifications

• Predefined items guidance for completeness

 Description languages / formal specification

• Concise, but unsuitable for customers; real-life situations generally untractable

 Graphical models

8Software Engineering – © P. Baumann

Structured Presentation Example

2.6.1 Grid facilities

The editor shall provide a grid facility where a matrix of

horizontal and vertical lines provide a background to the

editor window. This grid shall be a passive grid where the

alignment of entities is the user's responsibility.

Rationale: A grid helps the user to create a tidy diagram with

well-spaced entities. Although an active grid where entities

'snap-to' grid lines can be useful, the positioning is imprecise.

The user is the best person to decide where entities should be

positioned.

Specification: ECLIPSE/WS/Tools/DE/FS Section 5.6

Source: Ray Wilson, Glasgow Office

9Software Engineering – © P. Baumann

Example: Sequence Diagram of ATM Withdrawal

ATM Database

Card
Card number

Card OK
PIN request

PIN

Option menu

<<exception>>
invalid card

Withdraw request

Amount request

Amount

Balance request

Balance

<<exception>>
insufficient cash

Debit (amount)

Debit response

Card

Card removed

Cash

Cash removed

Receipt

Validate card

Handle request

Complete
transaction

10Software Engineering – © P. Baumann

User vs. System Requirements: Example

1. The software must provide a means of representing and accessing external files

created by other tools.

1.1 The user should be provided with facilities to define the type of external files.

1.2 Each external file type may have an associated tool which may be applied to the file.

1.3 Each external file type may be represented as a specific icon on the user‘s display.

1.4 Facilities should be provided for the icon representing an external file type to be

defined by the user.

1.5 When a user selects an icon representing an external file, the effect of that selection

is to apply the tool associated with the type of the external file to the file represented by

the selected icon.

User requirement definition

System requirements specification

derive, and document it!

11Software Engineering – © P. Baumann

Bad Language Style

 ECSS Recommendations for the wording of requirements (section 8.3)

1. General format: should be stated in ―what‐is‐necessary‖ terms, as opposed to

telling ―how to‖ perform a task and should be expressed in a positive way, as

a complete sentence (with a verb and a noun).

2. Required verbal form:

―shall‖ = requirement; ―should‖ = recommendation;

―may‖ = permission and ―can‖ = possibility or capability.

3. Format restrictions (List of terms that shall not be used in a TS requirement)

“and/or”, ―etc.‖, ―goal‖, ―shall be included but not limited to‖, ―relevant‖, ―necessary‖,

―appropriate‖, ―as far as possible‖, ―optimize‖, ―minimize‖, ―maximize‖, ―typical‖,

―rapid‖, ―user‐friendly‖, ―easy‖, ―sufficient‖, ―enough‖, ―suitable‖, ―satisfactory‖,

―adequate‖, ―quick‖, ―first rate‖, ―best possible‖, ―great‖, ―small‖, ―large‖ and

“state of the art”.

European Cooperation for Space Standardization - ECSS‐E‐ST‐10‐06C (6 March 2009) - Technical requirements

specification

12Software Engineering – © P. Baumann

Sample Requirements Sentence Template

When?

Under what

condition?

MUST

SHOULD

WILL

THE

SYSTEM

-

<whom>

ALLOW TO

BE

CAPABLE

OF

<object &

supplement

of object>

<process

term>

after [Pohl, Rupp 2013]

+ project glossary

13Software Engineering – © P. Baumann

Inset: Who Reads Requirements?

Client managers
System end-users
Client engineers
Contractor managers
System architects

System end-users
Client engineers
System architects
Software developers

Client engineers (perhaps)
System architects
Software developers

User
requirements

System
requirements

Software design
specification

14Software Engineering – © P. Baumann

Inset: Who Uses a Requirements Document

15Software Engineering – © P. Baumann

Functional vs Non-Functional Requirements

 Functional requirements

• Statements of services the system should provide

• how the system should react to particular inputs

• how the system should behave in particular situations.

 Non-functional requirements

• constraints offered by the system such as timing constraints

• constraints on the development process, standards, etc.

 Domain requirements

• Requirements that come from the application domain of the system and that reflect
characteristics of that domain.

 Note: this classification is orthogonal to the user/system requirements

16Software Engineering – © P. Baumann

Examples of Functional Requirements

 LIBSYS system:

• A library system that provides a single interface to a number of databases of articles in

different libraries.

• Users can search for, download and print these articles for personal study.

 Requirements

• "Users shall be able to search either all of the initial set of databases or select a subset

from it.

• The system shall provide appropriate viewers for the user to read documents in the

document store.

• Every order shall be allocated a unique identifier (ORDER_ID) which the user shall be

able to copy to the account’s permanent storage area."

17Software Engineering – © P. Baumann

Requirements Imprecision

 Problems when requirements not precisely stated

 Ambiguous requirements may be interpreted in different ways by

developers and users

• …and they will !

 ‗appropriate viewers‘?

18Software Engineering – © P. Baumann

Non-Functional Requirements

 These define system properties and constraints

• Properties: reliability, response time and storage requirements, …

• Constraints: I/O device capability, system representations, …

• + domain constraints: security, legal impacts, domain expert workflow, …

 Process requirements may also be specified mandating a particular

CASE system, programming language, or development method

 Non-functional requirements may be more critical than functional

requirements

• If not met: system is useless

19Software Engineering – © P. Baumann

Non-Functional Requirements Examples

 Product requirement

• 8.1 The user interface for LIBSYS shall be implemented as simple HTML

without frames or Java applets.

 Organisational requirement

• 9.3.2 The system development process and deliverable documents shall

conform to the process and deliverables defined in XYZCo-SP-STAN-95.

 External requirement

• 7.6.5 The system shall not disclose any personal information about customers

apart from their name and reference number to the operators of the system.

20Software Engineering – © P. Baumann

Goals Are Your Friend

 Non-functional requirements may be very difficult to state precisely,

imprecise requirements may be difficult to verify

 Goal

• A general user intention, such as ease of use

 Verifiable non-functional requirement…

• … = statement using some measure that can be objectively tested

• Use-case scenarios, augmented with measurable effect!

 Goals helpful to developers: illustrate intentions of users

21Software Engineering – © P. Baumann

Example Goals

 System goal

• "The system should be easy to use by experienced controllers and should be

organised in such a way that user errors are minimised."

 Verifiable non-functional requirement

• "Experienced controllers shall be able to use all the system functions after a total of

two hours training.

• After this training, the average number of errors made by experienced users shall not

exceed two per day, logged over one week."

22Software Engineering – © P. Baumann

Wrap-Up: The Requirements Document

 Requirements document =

user requirements

+ system requirements

• Functional + non-functional [+ domain] requirements

• Link customer developer

 NOT a design document

• As far as possible: WHAT system should do rather than HOW

 For user requirements:

Avoid computer jargon (your language), use customer's language instead

 Invent a standard format

and use it for all requirements

Adopt your company's convention

www.quatic.org

http://www.quatic.org/

23Software Engineering – © P. Baumann

 Talk, talk, talk with all customer stakeholders

• Everything you miss / don't understand enough will be very expensive later

• Understand your customer's business better than s/he does...they expect you to find right
solution

• desire vs demand

• but "remember the Golden Rule: Those who have the gold make the rules."

 Fix everything in writing, have it acknowledged (signed!) by customer

• It may save your / your company's life

• Your programmers at home must understand what to do

 Be concise, but use your customer's language in the User Req Spec

 Use tools as early as possible, but lay them aside when necessary

• Document versioning, UML diagramming

Practitioner's Hints

