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Parallel DBMSs

Not: Ramakrishnan/Gehrke Chapter 22, Part A

But: Silberschatz, Korth, Sudarshan: Database System Concepts, 5th edition

See also: http://www.research.microsoft.com/research/BARC/Gray/PDB95.ppt
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Why Parallel Access To Data?

1 Terabyte

10 MB/s

At 10 MB/s
1.2 days to scan

1 Terabyte

1,000 x parallel
1.5 minutes to scan

Parallelism:
divide a big problem 
into many smaller ones

to be solved in parallel.
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 Parallel machines are becoming quite common and affordable

• Prices of microprocessors, memory and disks have dropped sharply

• Typically today multi-core processors

• Clouds

 Databases are growing tremendously – ―Big Data‖

• large volumes of transaction data collected & stored for later analysis

• images etc. increasingly stored in databases

 Manifold applications need speedup:

• large volumes of data

• complex decision-support queries

• high throughput for transaction processing 

Introduction
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DBMS: The || Success Story

 DBMSs are maybe the most successful application of parallelism

• Teradata, Tandem vs. Thinking Machines, ...

• Every major DBMS vendor has some || server

• Workstation manufacturers now depend on || DB server sales

 Reasons for success:

• Bulk-processing (= partition ||-ism)

• Natural pipelining

• Inexpensive hardware can do the trick

• Users/app-programmers don‘t need to think in ||
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Parallelism in Databases

 Data can be partitioned across multiple disks for parallel I/O

 Individual relational operations can be executed in parallel

• (e.g., sort, join, aggregation) 

• data can be partitioned and each processor can work independently on its own partition

 Queries expressed in high level language (SQL / relational algebra)

• makes parallelization easier

 Different queries can be run in parallel with each other

• Concurrency control takes care of conflicts

 Thus, databases naturally lend themselves to parallelism
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Parallel DBMS: Intro

 Parallelism is natural to DBMS processing

• Pipeline parallelism: many machines each doing one step in a multi-step process

• Partition parallelism: many machines doing the same thing to different pieces of data

• Both are natural in DBMS!

Pipeline

Partition

Any 
Sequential
Program

Any 
Sequential
Program

SequentialSequential SequentialSequential
Any 

Sequential
Program

Any 
Sequential
Program

outputs split N ways, inputs merge M ways
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Some || Terminology

 Speed-Up

• More resources means proportionally less 

time for given amount of data

 Scale (up/out)

• If resources increased in proportion to 

increase in data size, time is constant
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Scaling

 scale horizontally (scale out) = add nodes

• More iron / more VMs

• Ex: 1 Web server system 3 

• Cheap hw, parallel algorithms, high-performance interconnects such as Gigabit 

Ethernet, InfiniBand, Myrinet

• Increases demand for efficient management & maintenance of multiple nodes

 scale vertically (scale up) = add resources to node

• CPUs, memory, …

• use virtualization more effectively (more resources!)

• Ex: increase number of Apache daemon processes
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Architecture Issue: Shared What?

Shared Memory
(SMP)

Shared Disk Shared Nothing
(network)

CLIENTS CLIENTSCLIENTS

Memory

Processors

Easy to program
Expensive to build
Difficult to scale up

Hard to program
Cheap to build
Easy to scale up

Sequent, SGI, Sun, NEC VMScluster, Sysplex Tandem, Teradata, SP2
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 Reduce disk access time by partitioning relations on multiple disks

 Horizontal partitioning = tuples of relation divided among many disks such 

that each tuple resides on one disk

• Vertical p.: store columns separately

 Several partitioning techniques, will inspect 3 (n disks):

 Round-robin:

• Send ith tuple inserted in relation to disk (i mod n)

 Hash partitioning:

• Choose one or more attributes as partitioning attributes, hash function h with range 0…n - 1

• Let i = result of hash function h applied to partitioning attribute value

• Send tuple to disk i

I/O Parallelism
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I/O Parallelism (Cont.)

 Range partitioning: 

• Choose attribute as the partitioning attribute

• Choose partitioning vector [v0, v1, ..., vn-2]

• Let v be the partitioning attribute value of a tuple

Tuples i with vi vi+1 go to disk i+1

Tuples i with vi < v0 go to disk 0 

Tuples i with vi vn-2 go to disk n-1

• Ex: partitioning vector [5,11]

• tuple with partitioning attribute value of 2 disk 0

• tuple with value 8 disk 1

• tuple with value 20 disk 2
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Comparison of Partitioning Techniques

 Let‘s evaluate how well partitioning techniques support 

the following types of data access:

 Scanning the entire relation

 Locating a tuple associatively – point queries

• Ex: r.A = 25

 Locating all tuples such that the value of a given attribute lies within a 

specified range – range queries

• Ex:  10 r.A < 25
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Comparison: Round Robin

 Advantages

• Best suited for sequential scan of entire relation on each query

• All disks have almost equal number of tuples; 

retrieval work thus well balanced between disks

 Range queries difficult to process

• No clustering tuples are scattered across all disks
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Comparison of Hash Partitioning

 Good for sequential access 

• Assuming hash function is good, and partitioning attributes form a key, 

tuples will be equally distributed between disks

• Retrieval work is then well balanced between disks

 Good for point queries on partitioning attribute

• Can lookup single disk, leaving others available for answering other queries

• Index on partitioning attribute can be local to disk, making lookup and update more 

efficient

 No clustering, so difficult to answer range queries
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Comparison: Range Partitioning

 Provides data clustering by partitioning attribute value,hence:

 Good for sequential access

 Good for point queries on partitioning attribute: only one disk accessed

 For range queries on partitioning attribute, one to a few disks may need to 

be accessed

• Remaining disks are available for other queries

• Good if result tuples are from one to a few blocks

• If many blocks are to be fetched, they are still fetched from one to a few disks 

potential disk parallelism wasted

• Example of execution skew
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Summary: Data Partitioning

Partitioning a table:

Round Robin Hash Range

Shared disk and memory less sensitive to partitioning, 
Shared nothing benefits from "good" partitioning 

A...E F...J K...N O...S T...Z

Good for equijoins, 
range queries, group-by

A...E F...J K...N O...S T...Z

Good for equijoins

A...E F...J K...N O...S T...Z

Good to spread load
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Thumb Rules: Partitioning across Disks

 relation contains only few tuples, fitting into single disk block

assign relation to a single disk

 large relation 

partition across all available disks

 relation of m disk blocks, n disks available 

allocate min(m,n) disks
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 distribution of tuples to disks may be skewed

= some disks have many tuples, while others may have fewer tuples

 2 Types of skew: attribute-value, partition

 Attribute-value skew

• Some values appear in the partitioning attributes of many tuples; 
all tuples with same value for partitioning attribute end up in the same partition

• Can occur with range-partitioning and hash-partitioning

 Partition skew

• With range-partitioning, badly chosen partition vector may assign too many tuples to some 
partitions and too few to others

• Less likely with hash-partitioning if a good hash-function is chosen

Skew
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Handling Skew in Range-Partitioning

 To create a balanced partitioning vector (assuming partitioning attribute 

forms a key of the relation):

• Sort relation on partitioning attribute

• Let n: number of partitions to be constructed. 

Construct partition vector by scanning relation in sorted order as follows:

After every 1/nth of relation has been read, value of partitioning attribute of next tuple

is added to the partition vector

 Duplicate entries or imbalances can result if duplicates are present in 

partitioning attributes!

 Alternative technique based on histograms used in practice
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Handling Skew using Histograms

 Balanced partitioning vector can be constructed from histogram in a 

relatively straightforward fashion

• Assume uniform distribution within each range of the histogram

 Histogram can be constructed 

by 

• scanning complete relation

• or sampling (blocks 

containing) tuples
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Skew: Virtual Processor Partitioning

 Skew in range partitioning can be handled elegantly using virtual processor 

partitioning: 

• create large number of partitions (say 10 to 20 times the number of processors)

• Assign virtual processors to partitions either in round-robin fashion or based on 

estimated cost of processing each virtual partition

 Basic idea:

• If any normal partition would have been skewed, it is very likely the skew is spread 

over a number of virtual partitions

• Skewed virtual partitions get spread across a number of processors, so work gets 

distributed evenly!
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 Interquery Parallelism = Queries/TAs execute in parallel with one another

 Increases transaction throughput

• used primarily to scale up transaction processing system to larger number of transactions per 
second

 Easiest form of parallelism to support particularly in shared-memory || db

• because even sequential database systems support concurrent processing

 More complicated to implement on shared-disk or shared-nothing

architectures

• Locking & logging must be coordinated by passing messages between processors

• Data in a local buffer may have been updated at another processor

• Cache-coherence! — reads & writes of data in buffer must find latest version of data

Interquery Parallelism
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Cache Coherency Protocol

 Example of a cache coherency protocol for shared disk systems:

• Before reading/writing to a page, 

page must be locked in shared/exclusive mode

• On locking a page, page must be read from disk

• Before unlocking a page, 

page must be written to disk if it was modified

 More complex protocols with fewer disk reads/writes exist

 Cache coherency protocols similar for shared-nothing systems

• Each database page assigned a  home processor

• Requests to fetch / write page sent to home processor

is this costly?
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Intraquery Parallelism

 Intraquery Parallelism

= execution of a single query in parallel on multiple processors/disks

• important for speeding up long-running queries

 Two complementary forms (details see subseq):

• Intra-operation Parallelism 

– parallelize the execution of each individual operation in the query

• Inter-operation Parallelism 

– execute the different operations in a query expression in parallel

 first form scales better with increasing parallelism 

• # tuples processed by operation    >typically    # operations in a query
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Inset: || QP in Array Databases

select 

max((A.nir - A.red) / (A.nir + A.red))

- max((B.nir - B.red) / (B.nir + B.red))

from A, B

Array A

select

max((B.nir - B.red) / (B.nir + B.red))

from B

select

max((A.nir - A.red) / (A.nir +A.red))

from A

Array B
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Parallel Processing of Rel. Operations

 discussion assumes:

• read-only queries

• shared-nothing architecture

• n processors, P0, ..., Pn-1, and n disks D0, ..., Dn-1,  
where disk Di is associated with processor Pi

 If a processor has multiple disks they can simply simulate a single disk Di

 Shared-nothing architectures can be efficiently simulated

on shared-memory and shared-disk systems

• Algorithms for shared-nothing systems can thus be run 
on shared-memory and shared-disk systems

• However, some optimizations may be possible
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 Choose partitioning vector

 Scan in parallel, and range-partition as you go 

(m entries)

 Each processor: sort locally

• All execute same operation in parallel, without any interaction (= data parallelism)

 Final merge operation (trivial)

• range-partitioning ensures global sortedness

 Problem: skew

• Solution: ―sample‖ data upfront for ―good‖ partition points

|| Sort: Range-Partitioning
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|| Join

 join operation requires pairs of tuples to be inspected

• test if they satisfy join condition

• if they do, pair is added to join output

 Idea: split pairs over several processors

• Each processor then computes part of the join locally

• Finally, collect results from each processor final result
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Partitioned Join

 For equi-joins and natural joins: possible to partition input relations across 

processors, and compute join locally at each processor

 Let R and S be the input relations; want to compute R  R.A=S.B S

 R, S each partitioned into n partitions, denoted R0,...,Rn-1 and S0,...,Sn-1

• range or hash partitioning

 R, S must be partitioned on their join attributes R.A and S.B

• using same range-partitioning vector or hash function

 Partitions Ri and Si sent to processor Pi,

 Each processor Pi locally computes Ri Ri.A=Si.B Si

• Any standard join method
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Partitioned Join (Cont.)
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Fragment-and-Replicate Join

 Partitioning not possible for some join conditions 

• Ex: non-equijoin conditions, such as R.A > S.B

 fragment and replicate
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Fragment-and-Replicate Join

 Partitioning not possible for some join conditions 

• Ex: non-equijoin conditions, such as R.A > S.B

 fragment and replicate technique

 Special case: asymmetric fragment-and-replicate

• R partitioned; any partitioning technique can be used

• S replicated across all processors

• Processor Pi locally computes join of Ri

with all of S (any join technique)
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Parallel Nested-Loop Join

 Assume that

• |S| << |R| and R stored by partitioning

• index on a join attribute of relation R at each of the partitions of relation R

 Use asymmetric fragment-and-replicate

• with relation S being replicated, and using existing partitioning of relation R

 Each processor Pj holding an S partition reads tuples of S stored in Dj,

replicates tuples to every other Pi

• At the end of this phase, relation S is replicated at all sites that store tuples of relation R

 Each processor Pi performs an indexed nested-loop join of S with ith 

partition of relation R
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Other Relational Operations

 Selection   (r)

• If is ai = v, where ai is an attribute and v a value:

If R is partitioned on ai then the selection is performed at a single processor

• If is L <= ai <= U (i.e., is a range selection), relation range-partitioned on ai: 

Selection performed at each processor whose partition overlaps with specified range 

of values

• In all other cases: 

selection performed in parallel at all processors

 Projection

• without duplicate elimination: possible in parallel while tuples read from disk

• If required, use any duplicate elimination technique
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Other Relational Operations (Cont.)

 Duplicate elimination

• Perform by using either of the parallel sort techniques;

eliminate duplicates as soon as they are found during sorting

• Can also partition tuples + perform duplicate elimination locally at each processor
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Aggregation

 For each aggregate function, 

establish decomposition:

• count(S) = count(s(i)) -- ditto for sum()

• avg(S) = ( sum(s(i))) / count(s(i))

• and so on...

 For groups:

• Sub-aggregate groups close to the source

• Pass each sub-aggregate to its group‘s site

• Chosen via hash function

A...E F...J K...N O...S T...Z

A Table

Count Count Count Count Count

Count
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Cost of Parallel Evaluation of Operations 

 no skew in partitioning, and no overhead due to parallel evaluation: 

expected speed-up will be 1/n

 skew & overheads taken into account, time taken by a parallel operation 

can be estimated as 

Tpart + max (T0,…,Tn-1) + Tasm

where:

• Tpart time for partitioning the relations

• Tasm time for assembling the results

• Ti time taken for operation at processor Pi

(needs to be estimated taking into account skew and time wasted in contentions)
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Interoperator ||: Pipelining

 Here: Pipelined parallelism

 Consider a join of four relations:    r1      r2       r3     r4

 Set up a pipeline that computes the three joins in parallel

• Let P1 be assigned the computation of temp1 = r1     r2

• P2 be assigned the computation of temp2 = temp1     r3

• P3 be assigned the computation of temp2      r4

 Each of these operations can execute in parallel, sending result tuples it 

computes to the next operation even as it is computing further results

• Needs pipelineable join evaluation algorithm 

• e.g. indexed nested loop join
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Limiting Factors for Pipeline ||

 Pipeline || avoids writing intermediate results to disk

 Useful with small number of processors, 

does not scale up well with more processors

• One reason: pipeline chains do not attain sufficient length

 Cannot pipeline blocking operators 

• I.e., which do not produce output until all inputs have been accessed

• (e.g. aggregate and sort)

 Little speedup obtained for the frequent cases of skew in which one 

operator's execution cost is much higher than the others
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Interoperator ||: Independent P.

 Now: Independent parallelism

 Consider join of four relations:       r1     r2      r3      r4

• Let P1 be assigned the computation of temp1 = r1      r2,
P2 be assigned the computation of temp2 = r3     r4,
P3 be assigned the computation of temp1     temp2

• P1 and P2 can work independently in parallel

• P3 has to wait for input from P1 and P2

• Can pipeline output of P1 and P2 to P3, combining independent parallelism and 
pipelined parallelism

 Does not provide a high degree of parallelism

• useful with a lower degree of parallelism; less useful in a highly parallel system
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 Query optimization in || databases significantly more complex 
than in sequential databases; open research!

 Cost models more complicated

• partitioning costs; skew and resource contention; etc.

 When scheduling execution tree in parallel system, must decide:

• How to parallelize each operation, how many processors to use for it?

• What operations to pipeline? what operations to execute independently in parallel? what 
operations to execute sequentially? …one after the other

 Difficult: Determining resources needed for each operation

• E.g., allocating more processors than optimal can result in high communication overhead

 Avoid long pipelines 

• final operation may wait a lot for inputs, while holding precious resources

Query Optimization
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 | parallel evaluation plans | >> | sequential evaluation plans |

• heuristics needed for choosing parallel plans

 Heuristic I: just parallelize every operation across all processors

• No pipelining & inter-operation pipelining 

• Finding best plan much easier: use standard optimization technique, but with new cost model

• Ex: Volcano parallel database, popularized exchange-operator model 
• exchange operator introduced into query plans to partition and distribute tuples

• each operation works independently on local data on each processor, in parallel with other copies of the operation

 Heuristic II: First choose most efficient sequential plan 

and then choose how to best parallelize operations in that plan

• Can explore pipelined parallelism as an option 

 Choosing good physical organization (partitioning technique) important

Query Optimization (Cont.)
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What’s Wrong With That?

 Best serial plan != Best || plan! …why?

 Trivial counter example:

• This query:

• Table partitioned 

with local secondary index at two nodes

• Range query addresses all of node 1 and 1% of node 2

N..Z

Table
Scan

A..M

Index 
Scan

SELECT *

FROM telephone_book 

WHERE name < ―NoGood‖

 Assessment:

• Node 1 should best do a scan of its partition,

Node 2 should best use secondary index
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Design of Parallel Systems

Some issues in the design of parallel systems:

 Parallel loading of data from external sources needed 

• handle large volumes of incoming data

• Index updates?

 Resilience to failure of processors or disks

• Probability higher in parallel system

• Availability: Operation (perhaps degraded) in spite of isolated failures

• Redundancy: extra copy of every (?) data item at another processor
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Design of Parallel Systems (Cont.)

 On-line reorganization of data and schema changes

• Ex: index construction on TB database can take hours/days even on parallel system

• Need to allow other processing (insertions/deletions/updates) to be performed on relation even as 

index is being constructed

• Basic idea: index construction tracks changes and ``catches up'‗ on changes at end

 On-line repartitioning and schema changes

• concurrently with other processing
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Histograms in Practice

 Usually two types of histograms:

 frequency histogram

• (attribute value, frequency) pairs for N 

most frequent attribute values

• optimizer estimates selectivity of

equality predicates

 quantile histogram

• = equidepth range histogram

• optimizer estimates selectivity of 

range predicates v0 v1 v9v4 v5
v2

v3
v6

v7 v9
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Histograms in Practice: Oracle

 single histogram, can act as either frequency histogram or equidepth 

histogram

• frequency version used when number of unique values of attribute is low

• switches to equidepth histogram if domain is large and number of unique values 

crosses a threshold

 Default threshold value is 75 

• will be number of buckets in equidepth histogram

 Oracle provides view, all_tab_histogram, to read histogram information
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Histograms in Practice: DB2

 quantile histogram 

• 20 buckets by default to approximate data distribution

• stored in system table SYSIBM.SYSCOLDIST

 frequency histogram

• Top 10 by default, can be specified by DBA

• used to estimate selectivity of equality predicates
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Histograms in Practice: MS SQL Server

 mix of frequency and equidepth histogram

• frequency of bucket boundaries + number of tuples in bucket

• number of buckets can go up to 200

 Histograms by default generated with sampling

 stored procedure DBCC SHOW STATISTICS extracts histogram 

information
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Histograms in Practice: PostgreSQL 

 mixture of end biased and equidepth histograms

 Histograms stored in relation pg_stats catalog table

• most frequent values stored as an array in the most_common_vals column

• equi-depth histogram stored as two arrays: 

• frequency of corresponding buckets

• bounds of the buckets

 10 buckets by default


