
350101 General ICT 1 :: © Jacobs University, P. Baumann

MORE ABOUT DATABASES

350101 General ICT 1 :: © Jacobs University, P. Baumann

Objectives

 After this unit you will be able to explain the concepts of:

• Transaction, scheduling conflicts, ACID

• How indexes speed up query procecessing

350101 General ICT 1 :: © Jacobs University, P. Baumann

Transactions

 Queries by multiple users, can arrive simultaneously

 DBMS must handle concurrent execution of queries

• high-throughput systems with 1,000s of TAs / sec

• Disk access frequent & slow  keep CPU humming

 Transaction (TA) = sequence of queries forming a unit

• Flight booking; Ebay buy; …

 OLTP = Online Transaction Processing

350101 General ICT 1 :: © Jacobs University, P. Baumann

Transactions: The Challenge

 Every user can safely think of only its own TA, all others unknown

 Concurrency achieved by DBMS, interleaving reads/writes of active TAs

 TA must leave DB in consistent state

• Ex: primary key & unique attributes; foreign keys…plus much more

 What can go wrong?

• TAs conflict

• TAs aborted

• Server crashes

350101 General ICT 1 :: © Jacobs University, P. Baumann

Transaction Syntax in SQL

 START TRANSACTION start TA

 COMMIT end TA successfully

 ROLLBACK abort TA (undo any changes)

 If user omits/forgets: 1 query = 1 TA

350101 General ICT 1 :: © Jacobs University, P. Baumann

ACID

 TA concept grounding on four basic properties:

 Atomic

• all TA actions will be completed, or nothing

 Consistent

• after commit/abort, data satisfy all integrity constraints

 Isolation

• any changes are invisible to other TAs until commit

 Durable

• nothing lost in future; failures occurring after commit cause no loss of data

350101 General ICT 1 :: © Jacobs University, P. Baumann

Good Transaction Behavior

 Ex: Bank account services

• T1 transfers $100 from B‟s account to A‟s account

• T2 credits both accounts with a 6% interest payment

 no guarantee T1 will execute before T2 or vice-versa when submitted

together; that‟s ok

 However, net effect must be equivalent to TAs running serially in some

order

T1: BEGIN A=A-100, B=B+100 END
T2: BEGIN A=1.06*A, B=1.06*B END

350101 General ICT 1 :: © Jacobs University, P. Baumann

Anatomy of Conflicts

 Consider a possible interleaving (schedule):

 This is OK. But what about:

 Problem: Reading uncommitted data (R/W conflicts, “dirty reads”)

 …plus a few more such bad situations

T1: A=A-100, B=B+100
T2: A=1.06*A, B=1.06*B

T1: A=A-100, B=B+100
T2: A=1.06*A, B=1.06*B

350101 General ICT 1 :: © Jacobs University, P. Baumann

Lock-Based Concurrency Control

 DBMS schedules reads & writes in a way preserving serializability =

consistent execution

• Like traffic lights

 Support mechanism: lock table, for each tuple + activity (r,w)

• TA must apply for S (shared) lock before reading, X (exclusive) lock before writing

 Locking protocols

• two-phase locking (strict, non-strict, conservative, …)

• Multi-version based

• Optimistic concurrency control

| S X
--+-----
S | + -
X | - -

350101 General ICT 1 :: © Jacobs University, P. Baumann

Indexing Data

 Problem: How to find specific tuples in a table?

 Alt 1: Brute force: table stored in file  scan file sequentially

• 1 table with N tuples  N/2 search time on average

• 2 tables with N, M tuples  N*M effort

 Alt 2: prepare small lookup table, called index

• Not full tuple stored, only search criterion + path to data item

• Extra magic for fast search

 Prominent: B-Tree index, Hash index

350101 General ICT 1 :: © Jacobs University, P. Baumann

How Does a Tree Index Work?

 Index on name attribute in Cocktails table, helpful for eg this query:

Ange | Bi | Bl Caipiri | Caipiro | Ch Co | Cu | D M | P | T

A - B | Ca - Ch | Co - D | M - T

Coconut Kiss

Cuba Libre

Daiquiri

Mojito

Planter„s Punch

Tequila SunriseChagalls

Caipirowska

Caipirinha

Bloody Mary

Bird of Heaven

Angel„s Smile

SELECT * FROM Cocktails WHERE name like „Cai%“

Cocktails.name

350101 General ICT 1 :: © Jacobs University, P. Baumann

How Does a Tree Index Work?

 Need fast access path to more attributes? Create further indexes!

 But think of update frequency

Coconut Kiss

Cuba Libre

Daiquiri

Mojito

Planter„s Punch

Tequila SunriseChagalls

Caipirowska

Caipirinha

Bloody Mary

Bird of Heaven

Angel„s Smile

Cocktails.name
Cocktails.ingredients

B-Tree
(Bayer, McCreigh)

350101 General ICT 1 :: © Jacobs University, P. Baumann

Searching with B-Trees

 Point query = retrieve by exact value (eg, grade)

 Range query = retrieve all within a range (eg, passing grades)

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Entries < 17 Entries => 17

350101 General ICT 1 :: © Jacobs University, P. Baumann

B-Tree

 B-Tree = n-ary tree optimized for black storage

• Block = n discriminators + (n+1) pointers to subtrees or leafs

• leaf chains for fast range queries

 B-tree block:

Index
pages

Leaf
pages

[Bayer & McCreight, 1972]

Fill factor

P0 K1 P1 K2 P2 Km Pm

350101 General ICT 1 :: © Jacobs University, P. Baumann

Why is This Fast?

 O(logF N) where F = fan-out, N = # leaf pages

 Typical fan-out: 133

 Typical capacities:

• Height 3: 1333 = 2,352,637 records

• Height 4: 1334 = 312,900,700 records

 Can often hold top levels in buffer pool:

• Level 1 = 1 page = 8 Kbytes

• Level 2 = 133 pages = 1 Mbyte

• Level 3 = 17,689 pages = 133 Mbytes

350101 General ICT 1 :: © Jacobs University, P. Baumann

Summary

 Picked 2 distinct aspects for looking inside a DBMS

 Concurrency control

• Transactions, scheduled via locks

• ACID

 Indexing

• Access paths to data, speeding up queries

