C>ONSTRUCTOR
UNIVERSITY

Transaction Management

Ramakrishnan & Gehrke, Chapter 14+

‘Do you want it fast or exact?"

Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Transactions

= Concurrent execution of user requests is essential for performance

 User requests arrive concurrently

« disk accesses frequent + slow: important to keep CPU humming by working on several
application programs concurrently

= Application program may carry out many operations on data retrieved,
but DBMS only concerned about data read/written from/to database

= transaction (TA) = DBMS’s abstract view of user program:
sequence of (SQL) reads & writes executed as a unit

Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Concurrency in a DBMS

= Users submit TAs, can think of each (trans)action as execution unit

 Concurrency achieved by DBMS by interleaving TAs

* TA must leave DB in consistent state
assuming DB is consistent when TA begins
» ICs declared in CREATE TABLE, CHECK constraints, etc.

= |ssues:

o Effect of interleaving TAs
 (Crashes

 Performance of concurrency control

Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Atomicity of Transactions

= Two possible TA endings:

 commit after completing all its actions — data must be safe in DB
* abort (by application or DBMS) — must restore original state

= |mportant property guaranteed by the DBMS: TAs atomic

 Perception: TA executes all its actions in one step, or none

= Technically: DBMS logs all actions

e can undo actions of aborted TAs

Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

ACID

= TA concept includes four basic properties:

= Atomic

« all TA actions will be completed, or nothing

= Consistent

« after commit/abort, data satisfy all integrity constraints

= |solation

 any changes are invisible to other TAs until commit

= Durable

* nothing lost in future; failures occurring after commit cause no loss of data

Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Transaction Syntax in SQL

= START TRANSACTION start TA
= COMMIT end TA successfully
= ROLLBACK abort TA (undo any changes)

= |f none of these TA management commands is present,
each statement starts and ends its own TA

* including all triggers, constraints,...

Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Anatomy of Conflicts

= Consider two TAs:

T1: BEGIN A=A-100, B=B+100 END
T2: BEGIN A=1.06"A, B=1.06"B END

* Intuitively, first TA transfers $100 from B’s account to A’s account
 second TA credits both accounts with a 6% interest payment

= no guarantee that T1 will execute before T2 or vice-versa, if both are
submitted together

= However, net effect must be equivalent to these two TAs
running serially in some order

Databases — © P. Baumann

C>ONSTRUCTOR

UNIVERSITY

Anatomy of Conflicts (contd.)
= Consider a possible interleaving (schedule):

T1: A=A-100, B=B+100

T2: A=1.06"A, B=1.06"B
= This is OK. But what about:

T1. A=A-100, B=B+100

T2: A=1.06*A, B=1.06"B
= The DBMS'’s view of the second schedule:

T1: R(A), W(A), R(B), W(B)

T2: R(A), W(A), R(B), W(B)

Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Anomalies from Interleaved Execution

= Reading uncommitted data (R/W conflicts, “dirty reads”):

T1. R(A), W(A), R(B), W(B), Abort
T2. R(A), W(A), Commit

= Unrepeatable reads (R/W conflicts):
T1: R(A), R(A), W(A), Commit
T2. R(A), W(A), Commit

= Qverwriting uncommitted data (W/W conflicts):

T1. W(A), W(B), Commit
T2. W(A), W(B), Commit

Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Scheduling Transactions: Definitions

= Serial schedule:
Schedule that does not interleave the actions of different TAs

= Equivalent schedules:
For any database state, the effect (on the set of objects in the database) of
executing the first schedule is identical to the effect of executing the
second schedule

= Serializable schedule:
A schedule equivalent to some serial execution of the TAs

= each TA preserves consistency
—> every serializable schedule preserves consistency

Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Lock-Based Concurrency Control

Core issues: What lock modes? What lock conflict handling policy?

Common lock modes: SX

» Each TA must obtain an S (shared) lock before reading,
and an X (exclusive) lock before writing

|
Lock conflict handling S
|

 Abort conflicting TA/ let it wait / work on previous version

Locking protocols

* two-phase locking (strict, non-strict, conservative, ...) — next!
e Timestamp based
* Multi-version based

Optimistic concurrency control

Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Two-Phase Locking Protocol

read-lock (X) read-p& (Z)
write-lock (X) | unlock (X)

write-lock (Y)

= 2PL

* All'locks acquired before first release
« cannot acquire locks after releasing first lock

unlock (Y)

Phase 1: Growing Phase 2: Shrinking

begin con]mit
>

= allows only serializable schedules © gr

L 4
L 4

]

 but complex abort processing

begin commit

= Strict 2PL g

 All locks released when TA completes

X X &

4

L 2

= Strict 2PL simplifies TA aborts ©©

Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Isolation Levels

= |solation level directives: summary about TA's intentions, placed before TA

o SET TRANSACTION READ ONLY
TA will not write — can be interleaved with other read-only TAs

« SET TRANSACTION READ WRITE

(default)
= assists DBMS optimizer
=
= Example: Choosing seats in airplane m -E
K52
B

 Find free seat, reserve by occ.=TRUE; if there is none, abort

']] : -.
 customer approval — commit, otherwise release seat by occ.=FALSE, . Emm
try again " mm
o . . HE-EN

* two "TA"s concurrently: can have dirty reads for occ — uncritical! (why?) ‘& - ==
HE:-E H
HE:-E H

TR

Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Isolation Levels (contd.)

= Refinement:
SET TRANSACTION READ WRITE ISOLATION LEVEL...

e ...READ UNCOMMITTED
allows TA to read dirty data

* ...READ COMMITTED

forbids dirty reads, but allows TA to issue query several times & get different results
(as long as TAs that wrote them have committed)

« ...REPEATABLE READ

ensures that any tuples will be the same under subsequent reads.
However a query may turn up new (phantom) tuples

e ...SERIALIZABLE
default; can be omitted

Databases — © P. Baumann

C>ONSTRUCTOR

UNIVERSITY
Effects of New Isolation Levels
= (Consider seat choosing algorithm:
Main Cabin
= [frun at level READ COMMITTED .
« will not see seats as booked if reserved but not committed XX - XIB
.] XX s X1
(roll back if over-booked) =
» Repeated queries may vyield different seats |- =H
(other TAs booking in parallel) .
. S
If run at REPEATABLE READ U
» any seat found remains available on reload - -
. e - HM
* new tuples seen by new queries (e.g. switching to larger plane) T B
P | |
2
=
2

25
Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Write-Ahead Logging (WAL)

= All change actions recorded in log file(s)

 Not single tuples, but complete pages affected

Before-Image (BFIM) + After-Image (AFIM) allow choice of redo or undo
Ti writes an object: TA identifier + BFIM + AFIM

Ti commits/aborts; TA identifier + commit/abort indicator

Log records chained by TA id — easy to undo specific TA

= Log written before database update = “write ahead”

 Simply append to log file, so fast
= Log is beating heart of DBMS!

 Use fast storage

« often duplexed & archived on stable storage

Databases — © P. Baumann

C>ONSTRUCTOR

WAL in Action (PostgreSQL)
(1) (2) (3) (4) (5)
CHECKPOINT BEGIN; BEGIN;
INSERT INTO TABLE_A VALUES('A"); INSERT INTO TABLE_A VALUES('B’);
COMMIT; COMMIT;
LSN_O \ [LSNOJ=)LSN_1 [LSN_1] &)LSN_2
shared buffer pool TABLE_A L) —
[“ LA [BTA]
REDO point A
. LSN 1 LSN 2
_checkpoint))
P ¥ e
WAL buffer e o \ . S
[TCHECKPOINT | [[A][COMMIT [[B [[COMMIT
REDO |point
T LSN_1 LSN 2
checkpoint . LN ¢
b » » »
WAL segments}| ' N A I Y B AN |
ast XLOG record] e RPOINT | [[A] COMMIT [[B [[COMMIT
\LSN O,J
database cluster TABLE_A

A\
AFIMs

[www.interdb.jp]

Databases — © P. Baumann

File View About

F2608 |42 61 54 48 B1 2F B3 0A 78 00 00 81 SO IS 09 BaZHF/ Flx. . FIEE.
32624 [06080Z0LI05 2568 MM MO MEF 777777, Wttpr][vwww
30640 |2E 7765627360 TAES D ISEE 6L 6169 6C , websi te unavail
32056 6102¢CO5S X QIO X OS165CE X 7763 [abl . comimal n?we
30672 |30 45 57 4A 6D 48 42 64 35 41 42 68 66 42 78 SA ~EWI meBdSABNfBxZ
30688 |35 47 4168 95 45 51 25 33 44 25 33 44 26 75 72 | 5GAKFEQYID930bur
32704 (6C DEDELEIECEEDEIGC B 7T D I I434 1 amal | . mi | Bwsldsd
32720 |30 26 €8 30 32 34 37 31 25 69 £6.63 0 0 ST 08N =247 14i [< =008
32736 |85 G S 8360 6 63 X 65 6C 62 61 £C 63 61 enONSmoc. el bal 1 2
32752 |76 616E 75 2D &S 7469 736265 77 XE 7777 77 vanu- eti shew. www
528 |26 00ED 150004 EADZOC 7S S0B0 32353166, . |... 1, . u s €2sAf
32784 (6CE3 5442 446D SA S0 | cTBDnZP

“ squnmwvmﬁ's«mmw.zgu-m:!‘jwmum

C>ONSTRUCTOR
UNIVERSITY

offset length desc e
= 0 24 WAL Frame Header L3
0 4 Page number =375
4 4 DE 22¢ n pages=0
8 4 Salt-1=-1251116397
12 4 Selt-2=-1719511045
] 4 Chedosum-1=323611519
20 4 Chedsum-2e- 7521“659
iy P rid
ﬁ t A
25
T HE .d
|| - »
S HS & 3
= 2 3% Cdmwu-l?ioeh
5] 32 2 Cell porrtier 0=5367
= 5391 147 Table B-Tree leaf cel
5301 2 payload lergth=142
5393 3 Key (Row ID)=52559
[\) 142 Payload
5395 1 Record header length=13
5397 12 Record keys
5397 1N | |
5358 2 Streg legth= 8
. 2 nspection
5401 1 5ting lergth=22
5402 1 Iteger constant 1
5403 1 Indeger constant O
5404 1 Iteger constant 0
5405 1 36 bt integar
5405 18 bitinteger
S47 1 64 bt integer

1 String length= 12

Offset: e OD00TFED 63 Selected: 0
0% 4
Pnoeﬁb 2/(12) Pa@Tme. WAL&W

MCmt n

Status: |CONO, CONG, INT15, INTE, INTE4, TXT12, BLE46, BLES2

[sqI|teforenS|ctooIk|t com]

© P. Baumann

Databases —

C>ONSTRUCTOR
UNIVERSITY

Aborting a Transaction

= [f TATiis aborted, all its actions have to be undone

* plus if another Tj reads object last written by Ti, then Tj must be aborted as well!

= Most systems avoid such cascading aborts by releasing TA's locks only at

commit time = strict 2PL
belgin commit

« [If Ti writes an object, n I
Tj can read this only after Ti commits

2

L 4

&
v

= Log serves to find actions to undo when aborting TA

Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Crash Recovery

= Log also used to recover from system crashes

» Abort all TAs active at crash time

 Re-run changes committed, but not yet permanent at crash time

= Aries recovery algorithm*;

 Analysis: Scan log forward (from most recent checkpoint until crash) to identify
* all TAs that were active
« all dirty pages in the buffer pool

» Redo: repeat all updates to dirty pages in the buffer pool as needed
* to ensure that all logged updates are in fact carried out and written to disk

 Undo: nullify writes of all TAs active at crash time working backwards in log
* by restoring "before value" of update, which is in log record for update

* C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh and P. Schwarz:
ARIES: A Transaction Recovery Method Supporting Fine-Granu-

larity Locking and Partial Rollbacks Using Write-Ahead Logging.
ACM Transactions on Database Systems, 17(1):94-162, 1992

C>ONSTRUCTOR
UNIVERSITY

Performance Impact

6- f:{i%
= Lock contention £

el

= —o— Blocking
= Deadlock f:' —+— Immediate-Restart

= 24 —¢— Optimistic

0 | | | |
0 S0 100 150 200

. See NGWSQL [ater! Multiprogramming Level

Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Summary

= Concurrency control & recovery: core DBMS functions
 Safe & reliable data management

 Concurrency invisible to user

= ACID against update anomalies

= Mechanisms:

 TA scheduling; Strict 2PL
* Locks
 Write-ahead logging (WAL)

Databases — © P. Baumann

