C>ONSTRUCTOR
UNIVERSITY

3-Tier Web Architectures

Ramakrishnan & Gehrke, Chapter 7
www.w3schools.com
www.webdesign.com

Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Components of Data-Intensive Systems

Presentation

 Primary interface to the user
* Needs to adapt to different display devices (PC, PDA, cell phone, voice access, ...)

Application (“business”) logic

 Implements business logic (implements complex actions, maintains state between different
steps of a workflow)

 Accesses different data management systems

Data management

 One or more standard database management systems

system architecture determines whether these three components reside on
a single system (“tier) or are distributed across several tiers

Databases — © P. Baumann

C>ONSTRUCTOR

UNIVERSITY
Client-Server Work Division
= Thin client e
* Client implements only GUI server
 Server implements business logic and data management database
= Thick client client
 Client implements GUI & business logic ser|ver
 Server implements data management database

Databases — © P. Baumann

Technologies

Presentation Tier
(Web Server & Browser)

Application Server

Database Management System

Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

HTML, CSS, Javascript
Ajax
Cookies

JSP Servlets, CGlI, ...

Tables, XML, JSON, ...
Stored Procedures

C>ONSTRUCTOR
UNIVERSITY

The Presentation Tier

= Recall: Functionality of the presentation tier

 Primary interface to the user
 Needs to adapt to different display devices (PC, PDA, cell phone, voice access?)

« For efficiency, simple functionality (ex: input validity checking)

= Mechanisms:

e HTML Forms
 Dynamic HTML / JavaScript
« CSS

Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

JavaScript

= (oal: Add functionality to the presentation tier

= Sample applications:

 Detect browser type and load browser-specific page
 Browser control: Open new windows, close existing windows (example: pop-ups)

* Client-side interaction (conditional forms elements, validation, ...)

= JavaScript optimal for Web browser because:

e Built-in engine — always available, fast

 Operates directly on “browser brain” = DOM

Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

The Middle (Application) Tier

= Recall: Functionality of the middle tier

* Encodes business logic

 Connects to database system(s)

* Accepts form input from the presentation tier
 Generates output for the presentation tier

= Mechanisms:

» CGI: Protocol for passing arguments to programs running at the middle tier
 Application servers: Runtime environment at the middle tier

 Servlets: Java programs at the middle tier

» PHP: Program parts in schematic documents (see earlier)

« How to maintain state at the middle tier

Databases — © P. Baumann

composeFullp

E)e(ilﬂaévaos

tﬂturn a full HTML page,

as opposed to fragments

String result =

th Atk FLHFFSFT AL A FR

// prov1de
result +=
+

Databases — © P. Baumann

"</head>"
"<body class='commander'>"
"<script type='text/javascript'

"<table class='commander' width=
Serrs
"<td>"
"<form method='POST' action=

'<table class=globalMsg border=0

ith HTML Inside

C>ONSTRUCTOR
UNIVERSITY

ConfigurationExcep

1 = BV A4 \

"'<ldoctype html public \"-//w3c//~
"<html1>"
"<head>"

"<meta http-equiv='expires' co
"<title>" + Globals.HTML_TITLE
"<Tink rel='stylesheet' type='
"<script type='text/javascript
"<script type='text/javascript
start external: (open source, b
"<script type='text/javascript
"<script type='text/javascript
"<script type='text/javascript
end external
"<script type='text/javascript

"<script type=text/javascrip
"</script>"; // close s

area for global status report
'<p>

// 1n1t1a112e tree node id generator
resetNodeId();

// start new id namespace

// START tree area (for 1S manipulation)
result += "<div id=" + Globals.J)S_SERVICE_TREE_ROOT + "
+ ''<script type=text/javascript>";

class=" + Globa

// generate tree

result += Globals.NODE_VARNAME + " =

int auxNode = newNodeId();

result += mkInnerNode(auxNode,

"[<a href=\"javascript:"

+ "/ <a href=\"javascript:"
"" Globals.NO_KEY);

int servicesNode = newNodeId();

new dTree('" + Globals.NODE_VARNAP

// fake root node, as dtree doeg
Globals.JS_SERVICE_TREE_ROOT_ID, "WMS sé¢
+ Globals.NODE_VARNAME + ''.openAll(
+ Globals.NODE_VARNAME + ".closeAll(

// root node id for service

// template: nodeId, parentId, nodeName, statusBulb, actions, msg, tuple
result += mkInnerNode(servicesNode, auxNode, Globals.HTML_SERVICES+Glo

"[<a href=\"javascript:addservice(" + Globals.NODE_VARNAME + "
’
Globals.NO_KEY);

// recursively generate tree of services
result += composeServices(servicesNode);

// write out tree generated
result += "document.write("

+ Globals.NODE_VARNAME + '");";

// END tree area (for JS manipulation)
result += "</script>"
+ "</div>";

// write tree and close document
result += </form>'

</td>"

LRLErS

"</table>"

"</body>"

"</htm1>";

+

++ + +

Debug. leaveverbose("composeFullPage()");

return result;

C>ONSTRUCTOR
UNIVERSITY

Where to Keep Application State?

= (Client-side state

* Information is stored on the client’'s computer in the form of a cookie

= Hidden state

* |nformation is hidden within dynamically created web pages

= Server-side state

* Information is stored in a database, or in the application layer’s local memory

Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Server-Side State

= Various types of server-side state, such as:

= 1. Store information in a database

» Data will be safe in the database

« BUT: requires a database access to query or update the information

= 2. Use application layer’s local memory

» (Can map the user’s IP address to some state

« BUT: this information is volatile and takes up lots of server main memory

Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Client-side State: Cookies

= Cookie = (Name, Value) pair Advantages

. » Easyto use in Java Servlets / PHP
= Text stored on client, passed to the _ Y | _
» simple way to persist non-essential data

application with every HTTP request on client even when browser has closed

« Lifetime can be preset (eg, 1 hour)

Disadvantages

» (Can be disabled by client . ,
 Limit of 4 kilobytes

* wrongfully perceived as "dangerous’, « Users can (and often will) disable them

therefore will scare away potential site
visitors if asked to enable cookies

Usage: store interactive state

* current user’s login information
 current shopping basket

» Any non-permanent choices user has
made

Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Hidden State

= overcome cookie disabling

= (Can “hide” data in two places:

* Hidden fields within a form

« path information

= Requires no client or server “storage” of information

« state information passed inside of each web page — “on the wire”

Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Hidden State: Hidden Fields

= Declare hidden fields within a form;

<form method='GET' action='http://.../input.php'>
<input type=‘hidden’ name=‘basketid’ wvalue=‘'PJyACJt4eYmWrcp’ />
<input name='wordKey' type='text'>
<input type='submit' wvalue='Go'>

</form>

= Advantages

* Users will not see information (unless they view HTML source!)

= Disadvantages

* |f used prolifically, it's a performance killer

 Works only in presence of forms

Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Hidden State: KVP Information

Information stored in URL GET request:

* http://server.com/index.htm?user=jeffd
* http://server.com/index.htm?user=jeffd&preference=pepsi

Parsing field in Java:
* javax.servlet.http.HttpUtils.parserQueryString()

Advantages

* Independent from forms

Disadvantages
* Limited to URL size (some kB)

Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Multiple state methods

= Typically all methods of state maintenance are used:

 User logs in and this information is stored in a cookie

 Userissues a query which is stored in the URL information

« User places an item in a shopping basket cookie

 User purchases items and credit-card information is stored/retrieved from a database

 User leaves a click-stream which is kept in a log on the web server (which can later be
analyzed)

Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Some Web Service Security Hints

Never use anything blindly that comes from client side

 don't assume that JavaScript code has been executed
* double check cookies on server
» don't trust hidden fields contents

never assume anything!

 set defaults (define in a central place!)

Clear state after request response

as with any API: clean, defensive programming

 perform standard plausi checks:
admissible number ranges, empty strings, max string lengths!

= Be paranoid !!!

Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Summary: 3-Tier Architectures

Web services commonly architected as having 3 components

* Presentation / application / data management tier

Application tier needs most implementation flexibility

* Rich choice of platforms (Java servlets, PHP, ...), each with tool support

To maintain state, use:

 Hidden form fields, hidden paths, cookies, server store, ...

For every aspect & component, security is an issue!

Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

DBWS Relevance

| Presentation Tier - Apache, HTML, }
= |n the project: LAMP stack ﬁ\\
.+ Linux, Apache, MySQL, PHP/Python | Application Tier <= " pytho”}
. [mysaL |
DBMS Tier = ">
- ' : [Linux)
Alternatives: -)
 MERN stack:

* MongoDB: A document database
« Express: web framework for Node.js
* React: JavaScript front-end library

* Node.js: JavaScript runtime bringing JavaScript to the server
« MEAN stack
* MongoDB, Express.js, AngularJS, Node.js

Databases — © P. Baumann

https://codingthesmartway.com/the-mern-stack-tutorial-building-a-react-crud-application-from-start-to-finish-part-1
https://www.ibm.com/topics/mean-stack

