
Databases – © P. Baumann

SQL

Ramakrishnan & Gehrke, Chapters 4 & 5

Databases – © P. Baumann

Example Instances

Sailors

sid sname rating age

22 Dustin 7 45.0

31 Lubber 8 55.5

58 Rusty 10 35.0

Reserves

sid bid day

22 101 10/10/96

58 103 11/12/96

Boats

bid color

101 red

102 blue

103 green

ratingsname

Sailors

sid

day

Reserves

color

budget
bid

Boats

Databases – © P. Baumann

 relation-list

• list of relation names (possibly with a range-variable after each name)

 target-list

• A list of attributes of relations in relation-list, possibly using range variables

 qualification

• Attr op const or Attr1 op Attr2 where op one of , , , , , combined using AND, OR, NOT

 DISTINCT is optional for suppressing duplicates

• By default duplicates not eliminated! …so tables actually are multisets, not sets

Basic SQL Query Structure

SELECT [DISTINCT] target-list

FROM relation-list

WHERE qualification

Databases – © P. Baumann

Conceptual Evaluation Strategy

 Semantics of an SQL query defined in terms of the following

conceptual evaluation strategy:

• Compute the cross-product of relation-list

• Discard resulting tuples if they fail qualification

• Delete attributes that are not in target-list

• If DISTINCT is specified, eliminate duplicate rows

 This strategy is probably the least efficient way to compute a query!

• An optimizer will find more efficient strategies to compute the same answers

SELECT [DISTINCT] target-list

FROM relation-list

WHERE qualification

Databases – © P. Baumann

Example of Conceptual Evaluation

SELECT S.sname

FROM Sailors S, Reserves R

WHERE S.sid=R.sid AND R.bid=103

(sid) sname rating age (sid) bid day

22 Dustin 7 45.0 22 101 10/10/96

22 Dustin 7 45.0 58 103 11/12/96

31 Lubber 8 55.5 22 101 10/10/96

31 Lubber 8 55.5 58 103 11/12/96

58 Rusty 10 35.0 22 101 10/10/96

58 Rusty 10 35.0 58 103 11/12/96

 cardinality?

Databases – © P. Baumann

A Note on Range Variables

 Really needed only if the same relation appears twice in the FROM clause

 previous query can also be written as:

It is good style,
however, to use
range variables
always!

SELECT S.sname

FROM Sailors S, Reserves R

WHERE S.sid=R.sid AND bid=103

SELECT sname

FROM Sailors, Reserves

WHERE Sailors.sid=Reserves.sid AND bid=103

 Or:

Databases – © P. Baumann

Join

 Join = several tables addressed in one query

SELECT S.sid

FROM Sailors S, Reserves R

WHERE S.sid=R.sid

SELECT target-list

FROM Relation1 R1, Relation2 R2, …

WHERE qualification

 List of relations in FROM clause determine cross product

 Frequently cross-relation conditions on attribute values to restrict results

 Most common: R1.attr1 = R2.attr2

• ex:

Databases – © P. Baumann

More Joins

 T = R ⋈C S

• First build R x S, then apply σC

 Generalization of equi-join: A B where one of =, <, ...

 Today, more general: σC can be any predicate

 Common join types [Quest]:

 Left join, right join, natural join,

https://www.quest.com/community/blogs/b/database-management/posts/an-overview-of-sql-join-types-with-examples

Databases – © P. Baumann

Even More on Joins

Databases – © P. Baumann

"Sailors who’ve reserved at least 1 boat"

 Would adding DISTINCT to this query make a difference?

 What is the effect of replacing S.sid by S.sname in the SELECT clause?

Would adding DISTINCT to this variant of the query make a difference?

(sid) sname rating age (sid) bid day

22 Dustin 7 45.0 22 101 10/10/96

22 Dustin 7 45.0 58 103 11/12/96

31 Lubber 8 55.5 22 101 10/10/96

31 Lubber 8 55.5 58 103 11/12/96

58 Rusty 10 35.0 22 101 10/10/96

58 Rusty 10 35.0 58 103 11/12/96

SELECT S.sid

FROM Sailors S, Reserves R

WHERE S.sid=R.sid

Databases – © P. Baumann

"sid’s of sailors who have reserved

a red or a green boat"

 UNION: Can be used to compute the

union of any two union-compatible sets of

tuples

• which themselves are the result of

SQL queries

SELECT S.sid

FROM Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid

AND (B.color=„red‟ OR B.color=„green‟)

SELECT S.sid

FROM Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=„red‟

UNION

SELECT S.sid

FROM Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=„green‟

 If we replace OR by AND in the first

version, what do we get?

 Also available: EXCEPT

• What do we get if we replace UNION

by EXCEPT?

Databases – © P. Baumann

SELECT S.sid
FROM Sailors S, Boats B1, Reserves R1,

Boats B2, Reserves R2
WHERE S.sid=R1.sid AND R1.bid=B1.bid

AND S.sid=R2.sid AND R2.bid=B2.bid
AND (B1.color=„red‟ AND B2.color=„green‟)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=„red‟
INTERSECT
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=„green‟

"Find sid’s of sailors who have reserved

a red and a green boat"

 INTERSECT: Can be used to compute the

intersection of any two union-compatible

sets of tuples

Key field!
 Included in the SQL/92 standard,

but some systems don‟t support it

 Contrast symmetry of the UNION and

INTERSECT queries with how much the

other versions differ!

Databases – © P. Baumann

 SELECT S1.a, S2.b FROM S1, S2

• S1 S2 = [<a,b> | a S1, b S2]

 S1 UNION S2

• S1 S2 = [t | t S1 t S2]

 S1 INTERSECT S2

• S1 S2 = [t | t S1 t S2]

 S1 EXCEPT S2

• S1 \ S2 = [t | t S1 t S2]

 SUM(S.num), AVG(), ...

• t.num
t S

Set Operations: Summary

 EXISTS(S)

• S {}

 t IN S2 t = ANY(S2)

• t S2

 t op ANY(S) t op SOME(S)

• x S: t op x

• (t op s1) ... (t op sn) for si S

 t op ALL (S)

• x S: t op x

• (t op s1) ... (t op sn) for si S

Databases – © P. Baumann

Set Operations: Unique or Duplicates?

 Recall: Relations are multi-sets

 When are duplicates kept / eliminated?

keep duplicates remove duplicates

SELECT

UNION ALL

INTERSECT ALL

EXCEPT ALL

SELECT DISTINCT

UNION

INTERSECT

EXCEPT

Databases – © P. Baumann

SELECT S.sname

FROM Sailors S

WHERE S.rating= (SELECT MAX(S2.rating)

FROM Sailors S2)

Aggregate Operators

 Summary information instead of value list

COUNT(*)

COUNT([DISTINCT] A)

SUM([DISTINCT] A)

AVG([DISTINCT] A)

MAX(A)

MIN(A)

SELECT AVG (S.age)

FROM Sailors S

WHERE S.rating=10

SELECT COUNT (*)

FROM Sailors S

SELECT AVG (DISTINCT S.age)

FROM Sailors S

WHERE S.rating=10

A: single column

SELECT COUNT (DISTINCT S.rating)

FROM Sailors S

WHERE S.sname=„Bob‟

Databases – © P. Baumann

 “Names of sailors who have reserved boat #103”:

Nested Queries

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid=103)

 WHERE clause can itself contain an SQL query

• so can FROM and HAVING, just not SELECT

 Sailors who have not reserved #103: use NOT IN

 To understand semantics of nested queries,

think of a nested loops evaluation

SELECT S.sname
FROM Sailors S, (SELECT R.sid

FROM Reserves R
WHERE R.bid=103) as X

WHERE S.sid = X.sid

Databases – © P. Baumann

“Sailors whose rating is greater than

that of sailor Horatio”

 Nested:

 “flat” query:

SELECT S1.sname

FROM Sailors S1, Sailors S2

WHERE S1.rating > S2.rating and S2.sname = „Horatio‟

SELECT *

FROM Sailors S

WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2

WHERE S2.sname = „Horatio‟)

Databases – © P. Baumann

Unnesting Nested Queries

 Can sequentialize uncorrelated queries:

 Always possible in FROM clause

 Not in correlated subqueries 

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid=103)

SELECT S.sname
FROM Sailors S, (SELECT R.sid

FROM Reserves R
WHERE R.bid=103) as X

WHERE S.sid = X.sid

WITH Tmp AS (
SELECT R.sid
FROM Reserves R
WHERE R.bid=103

)

SELECT S.sname
FROM Sailors S, Tmp
WHERE S.sid = Tmp.sid

Databases – © P. Baumann

 “Names of sailors who have reserved boat #103”:

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

Nested Queries with Correlation

 EXISTS: another set operator, like IN

 If UNIQUE is used, and * is replaced by R.bid:

finds sailors with at most one reservation for boat #103

• Why do we have to replace * by R.bid?

 Illustrates why, in general, subquery must be re-computed for each Sailors

tuple

Databases – © P. Baumann

Nested Queries: INTERSECT vs IN

 "sailors who have reserved both red & green boat":

 Similarly, EXCEPT queries re-written

using NOT IN / NOT EXISTS 

SELECT S.sid

FROM Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=„red‟

AND S.sid IN (SELECT S2.sid

FROM Sailors S2, Boats B2, Reserves R2

WHERE S2.sid=R2.sid AND R2.bid=B2.bid

AND B2.color=„green‟)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=„red‟
INTERSECT
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=„green‟

Databases – © P. Baumann

Nested Queries: EXCEPT vs NOT EXISTS

 "sailors who have reserved
all boats“:

SELECT S.sname

FROM Sailors S

WHERE NOT EXISTS

((SELECT B.bid

FROM Boats B)

EXCEPT

(SELECT R.bid

FROM Reserves R

WHERE R.sid=S.sid))

SELECT S.sname

FROM Sailors S

WHERE NOT EXISTS (SELECT B.bid

FROM Boats B

WHERE NOT EXISTS (SELECT R.bid

FROM Reserves R

WHERE R.bid=B.bid

AND R.sid=S.sid))

Sailors S such that ...

there is no boat B without ...

a Reserves tuple showing S reserved B

(1)

(2)

 Let‟s do it the hard way,
without EXCEPT:

Databases – © P. Baumann

More on Set Operators

 We have already seen IN, EXISTS and UNIQUE

• Can also use NOT IN, NOT EXISTS and NOT UNIQUE

 Also available: op ANY, op ALL, op one of , , , , ,

 "sailors whose rating is greater than that of sailor Horatio"

SELECT *

FROM Sailors S

WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2

WHERE S2.sname = „Horatio‟)

Databases – © P. Baumann

Expressions and Strings

SELECT S.age, age1=S.age-5, 2*S.age AS age2

FROM Sailors S

WHERE S.sname LIKE „B_%B‟

 Illustrates use of arithmetic expressions and string pattern matching:

• Find triples (of ages of sailors and two fields defined by expressions) for sailors whose

names begin and end with B and contain at least three characters

 AS and = are two ways to name fields in result

 LIKE is used for string matching

• `_‟ stands for any one character

• `%‟ stands for 0 or more arbitrary characters

Databases – © P. Baumann

Breaking the Set: ORDER BY

 So far: Query results are (multi) sets, hence unordered

Sometimes: need result sorted

 ORDER BY clause does this:

SELECT [DISTINCT] target-list

FROM relation-list

WHERE qualification

ORDER BY sort-list [ASC|DESC]

 sort-list: list of attributes for ordering (ascending or descending order)

 Ex: “Names of all sailors,

in alphabetical order”
SELECT S.sname

FROM Sailors S

ORDER BY S.sname

Databases – © P. Baumann

Grouping

 So far: aggregate operators applied to all (qualifying) tuples.

Sometimes: apply to each of several groups of tuples

 Consider: "age of the youngest sailor for each rating level"

• Unknown # of rating levels, and rating values for levels

• If we knew rating values go from 1 to 10:

can write loop of 10 queries:

For i = 1, 2, ... , 10:

SELECT MIN (S.age)

FROM Sailors S

WHERE S.rating = i

SELECT MIN(S.age)

FROM Sailors S

GROUP BY S.rating

…or use GROUP BY:

Databases – © P. Baumann

SELECT [DISTINCT] target-list

FROM relation-list

WHERE qualification

GROUP BY grouping-list

HAVING group-qualification

Queries With GROUP BY and HAVING

 target-list contains (i) attribute names, (ii) aggregate terms (ex: MIN(S.age))

 grouping-list: list of attributes for grouping

 group-qualification: group selection criterion (predicate on grouping-list)

 target-list attributes must be subset of grouping-list

• A group is a set of tuples that have the same value for all attributes in grouping-list

• Intuitively, each answer tuple corresponds to a group, and these attributes must have a single value per group

Databases – © P. Baumann

"Age of the youngest sailor with age 18,

for each rating with at least 2 such sailors"

SELECT S.rating, MIN (S.age) AS minage

FROM Sailors S

WHERE S.age >= 18

GROUP BY S.rating

HAVING COUNT (*) > 1

sid sname rating age

22 dustin 7 45.0

29 brutus 1 33.0

31 lubber 8 55.5

32 andy 8 25.5

58 rusty 10 35.0

64 horatio 7 35.0

71 zorba 10 16.0

74 horatio 9 35.0

85 art 3 25.5

95 bob 3 63.5

96 frodo 3 25.5

Databases – © P. Baumann

"Age of the youngest sailor with age 18,

for each rating with at least 2 such sailors"

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5

SELECT S.rating, MIN (S.age) AS minage

FROM Sailors S

WHERE S.age >= 18

GROUP BY S.rating

HAVING COUNT (*) > 1

rating age

1 33.0

3 25.5

3 63.5

3 25.5

7 45.0

7 35.0

8 55.5

8 25.5

9 35.0

10 35.0

rating minage

3 25.5

7 35.0

8 25.5

Databases – © P. Baumann

Conceptual Evaluation

 compute cross-product of relation-list

 discard tuples that fail qualification

 delete `unnecessary’ attributes

 partition remaining tuples into groups by value of attributes in grouping-list

 apply group-qualification to eliminate some groups

• Expressions in group-qualification must have a single value per group!

 generate one answer tuple per qualifying group

SELECT [DISTINCT] target-list

FROM relation-list

WHERE qualification

GROUP BY grouping-list

HAVING group-qualification

Databases – © P. Baumann

rating age

1 33.0

3 25.5

3 63.5

3 25.5

7 45.0

7 35.0

8 55.5

8 25.5

9 35.0

10 35.0

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5

"Age of the youngest sailor with age 18,

for each rating with at least 2 such sailors

and with every sailor under 60"

HAVING COUNT (*) > 1

AND EVERY (S.age <=60)

What is the result of

changing EVERY

to ANY?

rating minage

7 35.0

8 25.5

Databases – © P. Baumann

sid sname rating age

22 dustin 7 45.0

29 brutus 1 33.0

31 lubber 8 55.5

32 andy 8 25.5

58 rusty 10 35.0

64 horatio 7 35.0

71 zorba 10 16.0

74 horatio 9 35.0

85 art 3 25.5

95 bob 3 63.5

96 frodo 3 25.5

"Age of the youngest sailor with age 18,

for each rating with at least 2 sailors between 18 and 60"

SELECT S.rating, MIN (S.age) AS minage

FROM Sailors S

WHERE S.age >= 18 AND S.age <= 60

GROUP BY S.rating

HAVING COUNT (*) > 1

Answer relation:

Sailors instance:

rating minage

3 25.5

7 35.0

8 25.5

Databases – © P. Baumann

Quiz

HAVING does the same for GROUP BY groups

as ______ does for SELECT items

Databases – © P. Baumann

"For each red boat, the number of

reservations for this boat"

 Grouping over a join of three relations

SELECT B.bid, COUNT (*) AS scount

FROM Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=„red‟

GROUP BY B.bid

SELECT B.bid, COUNT (*) AS scount

FROM Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid

GROUP BY B.bid

HAVING B.color=„red‟

SELECT B.bid, COUNT (*) AS scount

FROM Boats B, Reserves R

WHERE R.bid=B.bid AND B.color=„red‟

GROUP BY B.bid

 What if we remove B.color=„red‟

from the WHERE clause and

add a HAVING clause with this condition?

 What if we drop Sailors

and the condition involving S.sid?

Databases – © P. Baumann

"Age of the youngest sailor with age 18,

for each rating with at least 2 sailors (of any age)"

 Shows HAVING clause can also contain a subquery

 Compare this with the query where we

considered only ratings with 2 sailors over 18:

What if HAVING clause is replaced by:

• HAVING COUNT(*) >1

SELECT S.rating, MIN(S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING (SELECT COUNT (*)

FROM Sailors S2
WHERE S.rating=S2.rating) > 1

SELECT S.rating, MIN(S.age)

FROM Sailors S

WHERE S.age >= 18

GROUP BY S.rating

HAVING COUNT (*) > 1

Databases – © P. Baumann

SELECT S.rating

FROM Sailors S

WHERE S.age = (SELECT MIN (AVG (S2.age))

FROM Sailors S2)

"Those ratings for which the average age

is the minimum over all ratings"

 Aggregate operations cannot be nested!

WRONG:

SELECT Temp.rating, Temp.avgage

FROM (SELECT S.rating, AVG (S.age) AS avgage

FROM Sailors S

GROUP BY S.rating) AS Temp

WHERE Temp.avgage = (SELECT MIN (Temp.avgage)

FROM Temp)

 Correct solution (in SQL/92):

Databases – © P. Baumann

 Field values in a tuple are sometimes

unknown (e.g., a rating has not been assigned)

or inapplicable (e.g., no spouse‟s name)

• SQL provides a special value null for such situations

 Null complicates many issues, e.g.:

• Special operators needed to check if value is/is not null

• Is rating>8 true or false when rating is equal to null?

• What about AND, OR and NOT connectives?

• We need a 3-valued logic (true, false and unknown)

• Meaning of constructs must be defined carefully

• e.g., WHERE clause eliminates rows that don’t evaluate to true

• New operators (in particular, outer joins) possible/needed

Null Values

Databases – © P. Baumann

Integrity Constraints (Review)

 IC describes conditions that every legal instance of a relation must satisfy

• Inserts/deletes/updates violating ICs disallowed

• Can be used to ensure application semantics (e.g., sid is a key),

or prevent inconsistencies (e.g., sname has to be a string, age must be < 200)

 Types of IC‟s: Domain constraints, primary key constraints, foreign key

constraints, general constraints

• Domain constraints: Field values must be of right type. Always enforced

Databases – © P. Baumann

General Constraints

 Useful when more general ICs

than keys are involved

 Can use queries

to express constraint

 Constraints can be named

CREATE TABLE Sailors

(sid INTEGER,

sname CHAR(10),

rating INTEGER,

age REAL,

PRIMARY KEY (sid),

CHECK (rating >= 1 AND rating <= 10)

)

CREATE TABLE Reserves

(sname CHAR(10),

bid INTEGER,

day DATE,

PRIMARY KEY (bid,day),

CONSTRAINT noInterlakeRes

CHECK (`Interlake‟ <> (SELECT B.bname

FROM Boats B

WHERE B.bid=bid))

)

Databases – © P. Baumann

Assertions

CREATE TABLE Sailors

(sid INTEGER,

sname CHAR(10),

rating INTEGER,

age REAL,

PRIMARY KEY (sid),

CHECK

((SELECT COUNT (S.sid) FROM Sailors S)

+ (SELECT COUNT (B.bid) FROM Boats B) < 100)

)

 CHECK constraint is

awkward and wrong!

 If Sailors is empty,

number of Boats tuples can be

anything

CREATE ASSERTION smallClub

CHECK

((SELECT COUNT (S.sid) FROM Sailors S)

+ (SELECT COUNT (B.bid) FROM Boats B) < 100

)

Number of boats
+ number of sailors
is < 100

 ASSERTION is the right solution:

not associated with either table

Databases – © P. Baumann

Triggers

 Trigger: procedure that starts automatically

if & when specified changes occur to the database

 Three parts ("ECA rules"):

• Event -- activates the trigger

• Condition -- tests whether the triggers should run

• Action -- what happens if the trigger runs

Databases – © P. Baumann

Triggers: Example (SQL:1999)

CREATE TRIGGER youngSailorUpdate

AFTER INSERT ON Sailors

REFERENCING NEW TABLE NewSailors

FOR EACH STATEMENT

INSERT

INTO YoungSailors(sid, name, age, rating)

SELECT sid, name, age, rating

FROM NewSailors N

WHERE N.age <= 18

Databases – © P. Baumann

Summary

 SQL important factor for acceptance of relational model

• more natural than earlier, procedural query languages

• Simple, easy-to-grasp paradigm: sets + few generic operations on them

• Relationally complete = as powerful as relational algebra

• in fact, significantly more expressive power than relational algebra

• Not computationally complete! (no recursion, for example)

 Set orientation good basis for declarative query language

• Declarative = describe desired result (well, almost :-), more user-oriented
(imperative = describe algorithm; more implementation-oriented)

 SQL allows specification of integrity constraints

 Triggers respond to changes in the database

Databases – © P. Baumann

Summary (Contd.)

 Many alternative phrasings

• optimizer should look for most efficient evaluation plan

• In practice, users need to be aware of how queries are optimized and evaluated for
best results

 NULL for unknown field values

• brings many complications

 ...and we have left out a lot!

• Recursion, PL/SQL, schema evolution, ...

