C>ONSTRUCTOR
UNIVERSITY

Parallel DBMSs

Instructor; Peter Baumann

email: pbaumann@constructor.university
tel: -3178
office: room 88, Research 1

Databases & Web Services — © P. Baumann 1

C>ONSTRUCTOR
UNIVERSITY

Overview

= Motivation

= Data partitioning

= Query operator parallelization
= Skew

= Optimization

Databases & Web Services — © P. Baumann 2

C>ONSTRUCTOR
UNIVERSITY

Parallelization: Principle

= (Goal

 |Improve performance by executing multiple operations in parallel

e More processors —
each query faster / same speed on more data / more transactions per second / ...

= |n LAN: cost(network) << cost(disk 10)

= Key challenge

 overhead & contention can kill performance

Databases & Web Services — © P. Baumann 3

C>ONSTRUCTOR
UNIVERSITY

Parallelization Variants

= Pipeline parallelism

e many machines each doing one step in a multi-step process

An Any
Sequgnﬂal Sequgnnal

Progra Progra

= Partition parallelism

* many machines doing the same thing to different pieces of data

Any
Sequeéential
Program

Databases & Web Services — © P. Baumann 4

C>ONSTRUCTOR

UNIVERSITY
Speedup & Scaleup
= Speedup: faster
= Scaleup: do more
= Linear vs non-linear (sub-linear)
Speedup Batch
Scaleup
x 1 x5 x10 x15
processors (=P) | # processors (=P) AND data sizé

Databases & Web Services — © P. Baumann 5

C>ONSTRUCTOR
UNIVERSITY

Challenges to Linear Speedup & Scaleup

Startup cost

 Cost of starting an operation on many processors

Interference

 Contention for resources between processors

Skew

» Slowest processor becomes the bottleneck

Blocking operations

 Can continue only once all results are seen: sort, top-k, aggregation, ...

Databases & Web Services — © P. Baumann 6

C>ONSTRUCTOR

UNIVERSITY
Architectures for Parallel Databases
Shared memory Shared disk Shared nothing
Sequent, SGI, Sun, NEC VMScluster, Sysplex Tandem, Teradata, SP2
(P/\ (P/\ l\/P\' LIVIH M\‘/IJ D\‘/IJ \ilnterconnection Network}
nterconnection Networ P ‘P (p) (P} P l.
| | | b D of Y ¥ ¥ et
Global Shared Memory ‘ Interconnection Network: TI\/IJ M M
- J S iy J o J —— - J = < J > - { = - J T
2 &0 @ o @ ogwe e e
~

most scalable

- minimizes interference by minimizing resource sharing
- commodity hardware

most difficult

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Data Placement: How to Partition?

= Partitioning always necessary: tuples assigned to set of disks / processors

e Static or during query

Round Robin Hash partitioning Range partitioning
tuple t; = chunk (i mod P) tuple t = chunk h(t.A) mod P tuple t = chunkiif v, <tA<vy,

D880 BOA0R0 lllll
TSN fAaRAR TTITY

F.J|IK..NO...§[T...Z

A BF.J]K.Np._3Sf.Z A HFE.J]K.ND..S..Z
© balance load, full scan © equijoins, point queries, © equijoins,
® range queries full scan; ® range queries range queries, group-by

Partition vector =
list of switch points [vy; ...; v,

Databases & Web Services — © P. Baumann 8

C>ONSTRUCTOR
UNIVERSITY

|| of Query Operators

= Discussion assumes:

 read-only queries
 shared-nothing architecture

* nprocessors, Py, ..., P,.4, and ndisks Dy, ..., D, 4,
where disk D, is associated with processor P,

= Will look at filter, sort, join

= PS: Shared-nothing architectures can be efficiently simulated
on shared-memory and shared-disk systems

Databases & Web Services — © P. Baumann]

C>ONSTRUCTOR
UNIVERSITY

| Filter

How is work distribution among processors?

* Point query 0,_,(R), range query 0, <x«,2(R) . . . ' .
 Load balancing

= Round robin: all servers do the work ?m

[ALE|[F.3][k.N][o..d[T..Z]
[a. E][F..3][k.No..d|[T..7]

= Range partition: one server does the work

TTTT?

[a_el[F. I [K-N[o.d[T-2

= Hash partition:

* One server for g,-(R)

* All'servers for 0 p«2(R)

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

| Sort-Merge with Range-Partitioning
T

= (Choose partitioning vector
= Scan table in parallel, range-partition as you go

= Each processor: sort partition locally

» All execute same operation in parallel, no interaction

» (Can create local index

= Final merge operation (trivial: concatenation of sorted partial results)

 range-partitioning ensures global sortedness

= Problem: skew — more later

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Partitioned Join

e partition input relations, distribute

><: 0
For Equi-Join R D><g p-s5 S \
.\\

e compute join partitions

* recollect

Partition R, S on join attrs R.A & S.B 3

* No need to sort

000 ¢

 Range, hash partitioning all fine . : : 3 S

Corresponding partitions R, & S, = processor P,

P, locally computes R, D> <l a-sig S

 Any standard join method

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Fragment-and-Replicate Join

= Observation: Partitioning not possible for some join conditions

 EX: non-equijoin conditions, such as R.A> S.B o st [Jss | Lo

= fragment & replicate o o) Po)-CPo)-(Pos)—

r

56
5
&

|

f’_}_

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Fragment-and-Replicate Join

= (Qbservation: Partitioning not possible for some join conditions

 EX: non-equijoin conditions, such as RA> S.B

= fragment & replicate

'y

= Special case: asymmetric fragment-and-replicate

R partitioned; any partitioning technique can be used r

» small S replicated across all processors

3

558

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Cost of || Evaluation

= no skew in partitioning, no || overhead: expected speed-up is 1/n

= skew & overheads taken into account, || time estimate:
T, T max(T,...,T..)+ T,
where:
o T
* Tasm

» T, time taken for operation at processor P,
(needs to be estimated taking into account skew and time wasted in contentions)

part

oart iMe for partitioning the relations

time for assembling the results

Databases & Web Services — © P. Baumann

*var, const chan *filename, unsigned long line. void *ptr, size_t size)

L MALLOC_CALL_DEBUG
realloc_count,
((realloiEsunt %% REALLOC_MOD)) {
D_MEM(("Calls to realloc()“%d\n". realloc_count));

D _MEM({"Variabl .80) at 9t SlANn" vl i Ssigned long) size. filename, |
if f,.'."."- - NUL L) {

!err[, = (void Mibast ni ho(LEILE . AINED s

r{l

~tem p = (void *) realloc{ptr. size);
' ARHERT RVAL:temp l= NULL, ptr);
DEBUG LEVEL >= DEBUG_MEM) {
=~ memrec_chg var(&malloc_rec, var. filename, line, ptr, temp, size);

(temp):

~tonst-char *filtename, unsigned long line, size t count, size f size)

CALL ZJ-DU“ G MEM) |
ount; =¢, var, fi
count o :.:A‘_L{A:’(:_ MOD))y 1

ffLIBAST _DEBUG.FED. "Calls to calloof): %d\n’: aglloc_co
;,‘_v . ¥ L DeBUvunsiagned lo

ot ALLC
5Nt wnd 75125 EIe;l ime, line

Qi1)

tu | \ ‘-\":‘["
D _E‘ [EL
em Cadd) &

C>ONSTRUCTOR
UNIVERSITY

Skew

= distribution of tuples to disks may be skewed
= some disks have many tuples, while others may have fewer tuples

= Aftribute-value skew

» Many tuples share same values, few distinct values;
all tuples with same value for partitioning attribute end up in same partition!

 Affects hash-partitioning, range-partitioning

= Consequence: Partition skew

» Range-partitioning: bad partition vector — too many tuples to some partitions, too few to others
* Less likely with hash-partitioning if hash-function good

Databases & Web Services — © P. Baumann

Skew Kills || Performance

S0
45
40
35

3 30

S

¢

% 2%

e

"

3 20
1%

b

C>ONSTRUCTOR
UNIVERSITY

Number of tuples per relation = 1,000,000

Number of joins = 1
Number of procesascrs = 256
I/0 bandwidth = § MBytes/sec

Communication bandwidth = § MByt

tes/sec

GRACE

Degree of

Databases & Web Services — © P. Baumann

D.6
Bucket Skew

C>ONSTRUCTOR
UNIVERSITY

Handling Skew in Range-Partitioning

= Method for a balanced partitioning vector

* Sort relation on partitioning attribute
 Scan relation in sort order

« After every 1/nt of relation: add attribute value of next tuple to partition vector

= Drawbacks:

 |mbalance possible if duplicates in partitioning attributes
« Best for initial table load; frequent updates may change=disturb distribution

 Table scan expensive

= Alternative: histograms &

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Histograms

= Helps finding balanced partitioning vector

= Histogram can be constructed by

e scanning complete relation
* expensive

e sampling

 Accuracy?
 Qver time, with updates?

AN

symmetric, unimodal skew left skew right
[Atlassian " h ﬂ
uniform bimodal miultimodal

Databases & Web Services — © P. Baumann

https://www.atlassian.com/data/charts/histogram-complete-guide

C>ONSTRUCTOR
UNIVERSITY

Histograms Types

= Two main types of histograms:

= frequency histogram

* (attribute value, frequency) pairs for N
most frequent attribute values

* optimizer estimates selectivity of
equality predicates

= quantile histogram

* = equidepth range histogram

* optimizer estimates selectivity of
range predicates Vo Vi VgVy V5 VyVg Vg

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Histograms in Practice: Oracle

= single histogram, can act as either frequency histogram or equidepth
histogram

« frequency version used when number of unique values of attribute is low

* switches to equidepth histogram if domain is large and number of unique values
crosses a threshold

= Default threshold value is 75

* will be number of buckets in equidepth histogram

= Qracle provides view, all_tab_histogram, to read histogram information

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Histograms in Practice: DB2

= quantile histogram

20 buckets by default to approximate data distribution
o stored in system table SYSIBM.SYSCOLDIST

= frequency histogram

» Top 10 by default, can be specified by DBA
« used to estimate selectivity of equality predicates

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Histograms in Practice: MS SQL Server

= mix of frequency and equidepth histogram

« frequency of bucket boundaries + number of tuples in bucket

» number of buckets can go up to 200

= Histograms by default generated with sampling

= stored procedure DBCC SHOW STATISTICS extracts histogram
information

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Histograms in Practice: PostgreSQL

= mixture of end biased and equidepth histograms

= Histograms stored in relation pg_stats catalog table

» most frequent values stored as an array in the most_common_vals column

 equi-depth histogram stored as two arrays:
* frequency of corresponding buckets
* bounds of the buckets

= 10 buckets by default

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Different Approach: Virtual Partitioning

= create large number of partitions

* say, 10x to 20x number of disks / processors

= Assign virtual processors to partitions

* round-robin or based on cost estimate

= Basic idea:

« |f any normal partition skewed, this skew spread over several virtual partitions
» Skewed virtual partitions spread across several processors, so work distributed evenly

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Taxonomy for Parallel Query Evaluation

= 5o far: looked at operators — big picture? "] Student.Name

= |nter-query ||

Course.Dept ='CS'
e 1query — 1 processor

- |ntra_query || StUdent.Major ='EE’

* Inter-operator ||

* query runs on multiple processors
* operator runs on one processor

Taking.Num = Course.Num

Taking.ID = Student.ID

* |ntra-operator || <+ inspected so far
* operator runs on multiple processors
* most Scalable

Student || Course

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Interquery Parallelism

Queries/transactions execute in parallel with one another

* Increases transaction throughput; used primarily for larger #TAs per second

Easiest ||

Locking & logging coordinated by passing messages between processors

 Data in local buffer may have been updated at another processor

Cache-coherency challenging: buffer reads and writes need latest version

 Simple cache coherency protocol for shared disk systems:
Lock page; read page from disk; write page if modified; unlock page

 Each page has home processor, all page requests sent to home processor

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Intra-Query Parallelism

1 query — n processors/disks;

e important for long-running queries

Two complementary forms:

Inter-operator || — execute query operations in parallel, aka “pipelining”

Databases & Web Services — © P. Baumann

Intra-operator || — parallelize execution of each individual operation in query

C>ONSTRUCTOR
UNIVERSITY

Inter-Operator Parallelism

= Execute query operations in parallel
 Ex: pipelining of R1><TR2 ><{R3 ><]/R4

T1 =R <] R2 T2 =Nl <] R3 T3 == R4

e Even better: T1 =] R2
T3 =] T2

T2 :=R3D>< R4 g9

= Tuple streams
— avoid (disk) storage of large intermediate tables

= Drawbacks:

 Useful with small #processors, not for #procs >> #ops
 Not possible to parallelize blocking operations (e.g., aggregate, sort)
 Skew: cost of operators can vary significantly

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Intra-Operator Parallelism

= parallelize execution of each individual operation in query

» See earlier examples

= Scales better with increasing parallelism

* #tuples processed by operation typically >> #operations in query

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

| Query Optimization

= Query optimization in || databases significantly more complex
than in sequential databases; ongoing research!

* | parallel evaluation plans | >> | sequential evaluation plans |

= Cost models more complicated

» How to parallelize each operation, how many processors to use? What operations to
pipeline? what operations to execute independently in parallel? what operations to
execute sequentially? ...etc.

= Heuristic I: parallelize every operation across all processors (MapReduce!)
= Heuristic Il: choose most efficient sequential plan, parallelize that plan

= Critical:

 good physical organization (partitioning technique)
 (Good resource need estimate

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

What’s Wrong With That?

= Best serial plan = Best || plan! ...why?

= Trivial counter example:

* This query: = SELECT®
FROM telephone_book
WHERE name < “NoGood”

 Table partitioned
with local index at two nodes

» Range query addresses all of node 1 and 1% of node 2
= Assessment:

» Node 1 should best do a scan of its partition,
Node 2 should best use index

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Distributed Databases

= Parallel database system:

 One DB server environment (cloud, data center), stores all data
 Typically: processing nodes + Storage-Area Network (SAN) + fast network

= Distributed database system:

 Data stored across several geographically remote sites — slow, failing network
 each site managed by independent DB server

» Distributed transactions

= Failures to be expected always

» More hardware — more failure probability

 Replication

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Summary

= Parallel processing boosts performance

« Massive research done, continuing

= (Challenges:
 Data placement, data skew
« Parallel bulk load, data maintenance (updates, index), online repartitioning, ...
« Complex optimization

= Even more challenging: distributed query processing

 Independent nodes; failures; ...

Databases & Web Services — © P. Baumann

