
1Databases & Web Services – © P. Baumann

Parallel DBMSs

Instructor: Peter Baumann

email: pbaumann@constructor.university

tel: -3178

office: room 88, Research 1

2Databases & Web Services – © P. Baumann

Overview

 Motivation

 Data partitioning

 Query operator parallelization

 Skew

 Optimization

3Databases & Web Services – © P. Baumann

Parallelization: Principle

 Goal

• Improve performance by executing multiple operations in parallel

• More processors

each query faster / same speed on more data / more transactions per second / ...

 In LAN: cost(network) << cost(disk IO)

 Key challenge

• overhead & contention can kill performance

4Databases & Web Services – © P. Baumann

Parallelization Variants

 Pipeline parallelism

• many machines each doing one step in a multi-step process

 Partition parallelism

• many machines doing the same thing to different pieces of data

SequentialSequential SequentialSequential
Any

Sequential
Program

Any
Sequential
Program

Any
Sequential
Program

Any
Sequential
Program

5Databases & Web Services – © P. Baumann

Speedup & Scaleup

 Speedup: faster

 Scaleup: do more

 Linear vs non-linear (sub-linear)

6Databases & Web Services – © P. Baumann

Challenges to Linear Speedup & Scaleup

 Startup cost

• Cost of starting an operation on many processors

 Interference

• Contention for resources between processors

 Skew

• Slowest processor becomes the bottleneck

 Blocking operations

• Can continue only once all results are seen: sort, top-k, aggregation, ...

7Databases & Web Services – © P. Baumann

Architectures for Parallel Databases

Shared memory Shared disk Shared nothing

Sequent, SGI, Sun, NEC VMScluster, Sysplex Tandem, Teradata, SP2

most scalable

- minimizes interference by minimizing resource sharing

- commodity hardware

most difficult

8Databases & Web Services – © P. Baumann

Data Placement: How to Partition?

 Partitioning always necessary: tuples assigned to set of disks / processors

• Static or during query

Round Robin Hash partitioning Range partitioning
tuple ti chunk (i mod P) tuple t chunk h(t.A) mod P tuple t chunk i if vi-1 < t.A < vi

Partition vector =
list of switch points [v1; …; vp]

A...E F...J K...N O...S T...Z

 equijoins,
range queries, group-by

A...E F...J K...N O...S T...Z

 equijoins, point queries,
full scan; range queries

A...E F...J K...N O...S T...Z

 balance load, full scan
 range queries

9Databases & Web Services – © P. Baumann

|| of Query Operators

 Discussion assumes:

• read-only queries

• shared-nothing architecture

• n processors, P0, ..., Pn-1, and n disks D0, ..., Dn-1,
where disk Di is associated with processor Pi

 Will look at filter, sort, join

 PS: Shared-nothing architectures can be efficiently simulated

on shared-memory and shared-disk systems

10Databases & Web Services – © P. Baumann

|| Filter

 How is work distribution among processors?

• Point query σA=v(R), range query σv1<A<v2(R)

• Load balancing

 Round robin: all servers do the work

 Hash partition:

• One server for σA=v(R)

• All servers for σv1<A<v2(R)

 Range partition: one server does the work

A...E F...J K...N O...S T...Z

A...E F...J K...N O...S T...Z

A...E F...J K...N O...S T...Z

11Databases & Web Services – © P. Baumann

 Choose partitioning vector

 Scan table in parallel, range-partition as you go

 Each processor: sort partition locally

• All execute same operation in parallel, no interaction

• Can create local index

 Final merge operation (trivial: concatenation of sorted partial results)

• range-partitioning ensures global sortedness

 Problem: skew – more later

|| Sort-Merge with Range-Partitioning

12Databases & Web Services – © P. Baumann

Partitioned Join

 For Equi-Join R R.A=S.B S :

• partition input relations, distribute

• compute join partitions

• recollect

 Partition R, S on join attrs R.A & S.B

• No need to sort

• Range, hash partitioning all fine

 Corresponding partitions Ri & Si processor Pi,

 Pi locally computes Ri Ri.A=Si.B Si

• Any standard join method

13Databases & Web Services – © P. Baumann

Fragment-and-Replicate Join

 Observation: Partitioning not possible for some join conditions

• Ex: non-equijoin conditions, such as R.A > S.B

 fragment & replicate

14Databases & Web Services – © P. Baumann

Fragment-and-Replicate Join

 Observation: Partitioning not possible for some join conditions

• Ex: non-equijoin conditions, such as R.A > S.B

 fragment & replicate

 Special case: asymmetric fragment-and-replicate

• R partitioned; any partitioning technique can be used

• small S replicated across all processors

15Databases & Web Services – © P. Baumann

Cost of || Evaluation

 no skew in partitioning, no || overhead: expected speed-up is 1/n

 skew & overheads taken into account, || time estimate:

Tpart + max (T0,…,Tn-1) + Tasm

where:

• Tpart time for partitioning the relations

• Tasm time for assembling the results

• Ti time taken for operation at processor Pi

(needs to be estimated taking into account skew and time wasted in contentions)

16Databases & Web Services – © P. Baumann

SKEW

17Databases & Web Services – © P. Baumann

 distribution of tuples to disks may be skewed

= some disks have many tuples, while others may have fewer tuples

 Attribute-value skew

• Many tuples share same values, few distinct values;
all tuples with same value for partitioning attribute end up in same partition!

• Affects hash-partitioning, range-partitioning

 Consequence: Partition skew

• Range-partitioning: bad partition vector too many tuples to some partitions, too few to others

• Less likely with hash-partitioning if hash-function good

Skew

18Databases & Web Services – © P. Baumann

Skew Kills || Performance

19Databases & Web Services – © P. Baumann

Handling Skew in Range-Partitioning

 Method for a balanced partitioning vector

• Sort relation on partitioning attribute

• Scan relation in sort order

• After every 1/nth of relation: add attribute value of next tuple to partition vector

 Drawbacks:

• Imbalance possible if duplicates in partitioning attributes

• Best for initial table load; frequent updates may change=disturb distribution

• Table scan expensive

 Alternative: histograms

20Databases & Web Services – © P. Baumann

Histograms

 Helps finding balanced partitioning vector

 Histogram can be constructed by

• scanning complete relation

• expensive

• sampling

• Accuracy?

• Over time, with updates?

[Atlassian]

https://www.atlassian.com/data/charts/histogram-complete-guide

21Databases & Web Services – © P. Baumann

Histograms Types

 Two main types of histograms:

 frequency histogram

• (attribute value, frequency) pairs for N

most frequent attribute values

• optimizer estimates selectivity of

equality predicates

 quantile histogram

• = equidepth range histogram

• optimizer estimates selectivity of

range predicates v0 v1 v9v4 v5
v2

v3
v6

v7 v9

22Databases & Web Services – © P. Baumann

Histograms in Practice: Oracle

 single histogram, can act as either frequency histogram or equidepth

histogram

• frequency version used when number of unique values of attribute is low

• switches to equidepth histogram if domain is large and number of unique values

crosses a threshold

 Default threshold value is 75

• will be number of buckets in equidepth histogram

 Oracle provides view, all_tab_histogram, to read histogram information

23Databases & Web Services – © P. Baumann

Histograms in Practice: DB2

 quantile histogram

• 20 buckets by default to approximate data distribution

• stored in system table SYSIBM.SYSCOLDIST

 frequency histogram

• Top 10 by default, can be specified by DBA

• used to estimate selectivity of equality predicates

24Databases & Web Services – © P. Baumann

Histograms in Practice: MS SQL Server

 mix of frequency and equidepth histogram

• frequency of bucket boundaries + number of tuples in bucket

• number of buckets can go up to 200

 Histograms by default generated with sampling

 stored procedure DBCC SHOW STATISTICS extracts histogram

information

25Databases & Web Services – © P. Baumann

Histograms in Practice: PostgreSQL

 mixture of end biased and equidepth histograms

 Histograms stored in relation pg_stats catalog table

• most frequent values stored as an array in the most_common_vals column

• equi-depth histogram stored as two arrays:

• frequency of corresponding buckets

• bounds of the buckets

 10 buckets by default

26Databases & Web Services – © P. Baumann

Different Approach: Virtual Partitioning

 create large number of partitions

• say, 10x to 20x number of disks / processors

 Assign virtual processors to partitions

• round-robin or based on cost estimate

 Basic idea:

• If any normal partition skewed, this skew spread over several virtual partitions

• Skewed virtual partitions spread across several processors, so work distributed evenly

27Databases & Web Services – © P. Baumann

Taxonomy for Parallel Query Evaluation

 So far: looked at operators – big picture?

 Inter-query ||

• 1 query 1 processor

 Intra-query ||:

• Inter-operator ||

• query runs on multiple processors

• operator runs on one processor

• Intra-operator || inspected so far

• operator runs on multiple processors

• most scalable

Student

Taking

Course.Dept = 'CS'

Course

Student.Name

Taking.ID = Student.ID

Taking.Num = Course.Num

Student.Major = 'EE'

28Databases & Web Services – © P. Baumann

Interquery Parallelism

 Queries/transactions execute in parallel with one another

• Increases transaction throughput; used primarily for larger #TAs per second

 Easiest ||

 Locking & logging coordinated by passing messages between processors

• Data in local buffer may have been updated at another processor

 Cache-coherency challenging: buffer reads and writes need latest version

• Simple cache coherency protocol for shared disk systems:

Lock page; read page from disk; write page if modified; unlock page

• Each page has home processor, all page requests sent to home processor

29Databases & Web Services – © P. Baumann

Intra-Query Parallelism

 1 query n processors/disks;

• important for long-running queries

 Two complementary forms:

 Inter-operator || – execute query operations in parallel, aka “pipelining”

 Intra-operator || – parallelize execution of each individual operation in query

30Databases & Web Services – © P. Baumann

Inter-Operator Parallelism
 Execute query operations in parallel

• Ex: pipelining of R1 R2 R3 R4

• Even better:

 Tuple streams

 avoid (disk) storage of large intermediate tables

 Drawbacks:

• Useful with small #processors, not for #procs >> #ops

• Not possible to parallelize blocking operations (e.g., aggregate, sort)

• Skew: cost of operators can vary significantly

T1 := R1 R2 T2 := T1 R3 T3 := T2 R4
T1 T2 T3

T1 := R1 R2

T3 := T1 T2

T2 := R3 R4

T1

T2

T3

31Databases & Web Services – © P. Baumann

Intra-Operator Parallelism

 parallelize execution of each individual operation in query

• See earlier examples

 Scales better with increasing parallelism

• #tuples processed by operation typically >> #operations in query

32Databases & Web Services – © P. Baumann

|| Query Optimization

 Query optimization in || databases significantly more complex
than in sequential databases; ongoing research!

• | parallel evaluation plans | >> | sequential evaluation plans |

 Cost models more complicated

• How to parallelize each operation, how many processors to use? What operations to
pipeline? what operations to execute independently in parallel? what operations to
execute sequentially? …etc.

 Heuristic I: parallelize every operation across all processors (MapReduce!)

 Heuristic II: choose most efficient sequential plan, parallelize that plan

 Critical:

• good physical organization (partitioning technique)

• Good resource need estimate

33Databases & Web Services – © P. Baumann

What’s Wrong With That?

 Best serial plan != Best || plan! …why?

 Trivial counter example:

• This query:

• Table partitioned

with local index at two nodes

• Range query addresses all of node 1 and 1% of node 2

N..Z

Table
Scan

A..M

Index
Scan

SELECT *

FROM telephone_book

WHERE name < “NoGood”

 Assessment:

• Node 1 should best do a scan of its partition,

Node 2 should best use index

34Databases & Web Services – © P. Baumann

Distributed Databases

 Parallel database system:

• One DB server environment (cloud, data center), stores all data

• Typically: processing nodes + Storage-Area Network (SAN) + fast network

 Distributed database system:

• Data stored across several geographically remote sites slow, failing network

• each site managed by independent DB server

• Distributed transactions

 Failures to be expected always

• More hardware more failure probability

• Replication

35Databases & Web Services – © P. Baumann

Summary

 Parallel processing boosts performance

• Massive research done, continuing

 Challenges:

• Data placement, data skew

• Parallel bulk load, data maintenance (updates, index), online repartitioning, ...

• Complex optimization

 Even more challenging: distributed query processing

• Independent nodes; failures; ...

