
1Databases & Web Services – © P. Baumann

MapReduce

Instructor: Peter Baumann

email: pbaumann@constructor.university

tel: -3178

office: room 88, Research 1

2Databases & Web Services – © P. Baumann

MapReduce

 Goals: large data sets, distributed processing

• Hide details of parallelization, data distribution, fault tolerance, load balancing

• Inspired by functional PLs: Lisp, Scheme, Haskell, ...

• Functional programming: no side effects  automatic parallelization

 MapReduce programming model:

• sets of key/value pairs

• Developer implements interface of two (side-effect free) functions:

map (inKey, inValue) -> (outKey, intermediateValuelist)

reduce(outKey, intermediateValuelist) -> outValuelist

aka „group by“ in SQL

aka aggregation in SQL

3Databases & Web Services – © P. Baumann

Ex 1: Count Word Occurrences

map(String inKey, String inValue):

// inKey: document name

// inValue: document contents

for each word w in inValue:

EmitIntermediate(w, "1");

reduce(String outputKey, Iterator auxValues):

// outKey: a word

// outValues: a list of counts

int result = 0;

for each v in auxValues:

result += ParseInt(v);

Emit(AsString(result));

[image: Google]

5Databases & Web Services – © P. Baumann

Hadoop: a MapReduce implementation
Credits:

- David Maier, U Wash

- Costin Raiciu

- “The Google File System” by S. Ghemawat, H. Gobioff, and S.-T. Leung, 2003

- https://hadoop.apache.org/docs/r1.0.4/hdfs_design.html

https://hadoop.apache.org/docs/r1.0.4/hdfs_design.html
https://hadoop.apache.org/docs/r1.0.4/hdfs_design.html

6Databases & Web Services – © P. Baumann

Hadoop Key Components

 Hadoop Job Management Framework

• JobTracker = daemon service for submitting & tracking MapReduce jobs

• TaskTracker = slave node daemon in the cluster accepting tasks

(Map, Reduce, & Shuffle operations) from a JobTracker

 Hadoop File System (HDFS) = scalable, fault-tolerant file system

• modeled after Google File System (GFS)

• programs request data as 64 MB blocks („chunks“) from server, Hadoop ships

 Data processing, not management

7Databases & Web Services – © P. Baumann

Query Languages for MapReduce

 MapReduce powerful, but slow and fairly low-level

• algorithms need cumbersome rewriting = special-skill programming

• common “job patterns”, like SQL join?

SELECT INTO Temp

UV.sourceIP,

AVG(R.pageRank) AS avgPageRank,

SUM(UV.adRevenue) AS totalRevenue

FROM Rankings AS R, UserVisits AS UV

WHERE R.pageURL = UV.destURL

AND UV.visitDate BETWEEN

DATE(‘2000-01-15’) AND

DATE(‘2000-01-22’)

GROUP BY UV.sourceIP
SELECT sourceIP,

avgPageRank,

totalRevenue

FROM Temp

ORDER BY totalRevenue

DESC LIMIT 1
[A. Pavlo et al.: A Comparison of Approaches

to Large-Scale Data Analysis]

9Databases & Web Services – © P. Baumann

Pig

 Pig = declarative query language

• Yahoo! Research

 Features:

• sequences of MapReduce jobs

• relational (SQL) operators (JOIN, GROUP BY, etc)

• Easy to plug in Java functions

10Databases & Web Services – © P. Baumann

Example Problem

 user data in one file

 website data in another

 find top 5 most visited pages

 by users aged 18-25

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

[http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt]

11Databases & Web Services – © P. Baumann

MapReduce vs. Pig Latin

[http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt]

Users = load ‘users’ as (name, age);
Filtered = filter Users by age >= 18 and age <= 25;
Pages = load ‘pages’ as (user, url);
Joined = join Filtered by name, Pages by user;
Grouped = group Joined by url;
Summed = foreach Grouped generate group, count(Joined) as clicks;
Sorted = order Summed by clicks desc;
Top5 = limit Sorted 5;
store Top5 into ‘top5sites’;

12Databases & Web Services – © P. Baumann

Hive

 Relational database built on Hadoop

• Facebook, now Apache

 Common relational features:

• table partitioning, complex data types, sampling

• some query optimization

 Ex: SELECT word, count(1) AS count

FROM (SELECT explode(split(line, '\s')) AS word

FROM docs) temp

GROUP BY word

ORDER BY word

13Databases & Web Services – © P. Baumann

Spark: improving Hadoop

 After initial Hadoop hype, shortcomings perceived

• Difficulty of use, efficiency, tool integration, ...

 Spark = cluster-computing framework by Berkeley AMPLab

• Now Apache

 MapReduce, but:

• Disk-based comm in-memory comm

• Java Scala

• Resilient Distributed Datasets (RDDs)

• Objects split across cluster

• Remember sequence of transformations  can recompute on failure

 Data processing, not management

14Databases & Web Services – © P. Baumann

Ex: Logistic Regression Performance

 Find best line separating two sets of points

 29 GB dataset

 20x EC2 m1.xlarge 4-core machines

 Result:

0

1000

2000

3000

4000

5000

1 5 10 20 30

R
u

n
n

in
g

 T
im

e
 (
s)

#Iterations

Hadoop

Spark

127 s / iteration

first iteration 174 s

further iterations 6 s

target

random initial line

15Databases & Web Services – © P. Baumann

Conclusion

 MapReduce = specialized (synchronous) distributed processing paradigm

• Optimized for horizontal scaling in commodity clusters (!), fault tolerance

• Efficiency? Hardware, energy, ... (see [0], [1], [2], [3] etc.)

• “Adding more compute servers did not yield significant improvement” [src]

• Well suited for sets, less so for highly connected data (graphs, arrays)

• Need to rewrite algorithms

 Apache Hadoop = MapReduce implementation (HDFS, Java)

 Apache Spark = improved MapReduce implementation (HDFS, DSS, Scala)

 Query languages on top of MapReduce

• HLQLs: Pig, Hive, JAQL, ASSET, …

https://www.quora.com/Parallel-Computing-MPI-vs-MapReduce-what-is-the-most-efficient
https://stackoverflow.com/questions/6838797/how-efficient-are-opensource-computation-platform-like-hadoop-etc
https://blog.cloudera.com/blog/2010/12/a-profile-of-hadoop-mapreduce-computing-efficiency-sra-paul-burkhardt/
http://csc.csudh.edu/btang/seminar/slides/Hadoop.pdf
http://csc.csudh.edu/btang/seminar/slides/Hadoop.pdf

