
Databases & Web Services – © P. Baumann

Query Processing and Optimization

Jennifer Widom

Ramakrishnan/Gehrke Chapters 10, 12

2320302 Databases & Web Services (P. Baumann)

Steps in Database Query Processing
Parser – Checker - Views - Logical plan – Optim1 - Physical plan – Optim2 - Execution

parser &

translator
query

relational

algebra

expression

execution

planoptimizer
evaluation

engine

query

output

data
data

statistics

„logical plan“ „physical plan“

3320302 Databases & Web Services (P. Baumann)

Steps in Database Query Processing

Query string
 Parser

Query tree
 Checker 

Valid query tree
 View expander 

Valid tree w/o views
 Logical query plan generator

Logical query plan
 Query rewriter (heuristic) 

Better logical plan
 Physical query plan generator (cost-based)

Selected physical plan
 Code generator 

Executable code
 Execution engine

Parser – Checker - Views - Logical plan – Optim1 - Physical plan – Optim2 - Execution

4320302 Databases & Web Services (P. Baumann)

Running Example

 Tables (what are the keys?):

 Query to find all EE students taking at least one CS course:

•

Student(ID, Name, Major)

Course(Num, Dept)

Taking(ID, Num)

SELECT Name

FROM Student, Course, Taking

WHERE Taking.ID = Student.ID

AND Taking.Num = Course.Num

AND Major = 'EE'

AND Dept = 'CS'





Parser – Checker - Views - Logical plan – Optim1 - Physical plan – Optim2 - Execution

5320302 Databases & Web Services (P. Baumann)

 Via view expander original query becomes:

View Expander

 Suppose Student is view:

SELECT Name

FROM Course, Taking, StudName, StudMajor

WHERE Taking.ID = StudName.ID AND Taking.Num = Course.Num AND

StudMajor.Major = 'EE' AND Course.Dept = 'CS' AND StudName.ID = StudMajor.ID

CREATE VIEW Student AS

SELECT StudName.ID, Name, Major

FROM StudName, StudMajor

WHERE StudName.ID = StudMajor.ID

SELECT Name

FROM Course, Taking, Student AS (SELECT StudName.ID, Name, Major

FROM StudName, StudMajor WHERE StudName.ID = StudMajor.ID)

WHERE Taking.ID = Student.ID AND Taking.Num = Course.Num AND

Student.Major = 'EE' AND Course.Dept = 'CS„ AND StudName.ID = StudMajor.ID

 "flattened":

Parser – Checker - Views - Logical plan – Optim1 - Physical plan – Optim2 - Execution

SELECT Name

FROM Student, Course, Taking

WHERE Taking.ID = Student.ID

AND Taking.Num = Course.Num

AND Major = 'EE'

AND Dept = 'CS'

StudName(ID, Name) StudMajor(ID, Major)

Student(ID, Name, Major)

6320302 Databases & Web Services (P. Baumann)

Logical Query Tree: Notation Overview

 Logical query tree

= Logical plan = parsed query,

translated into relational algebra

 Equivalent to relational algebra

expression (why not calculus?)

using:

• cross product

• selection from set,
based on condition cond

• projection to attributes

• application of an expression
to arguments

•  joins...

SELECT (op_1(R1,R2,…)),op_2(R1,R2,…), …)

FROM R1, R2, …

WHERE (R1,R2,…)

Parser – Checker - Views - Logical plan - Rewriter - Physical plan - Code gen. - Execution

R1 Rn

op_nop_1 ...

cond

...

7320302 Databases & Web Services (P. Baumann)

Logical Query Plan
Parser – Checker - Views - Logical plan – Optim1 - Physical plan – Optim2 - Execution

SELECT Name

FROM Student, Course, Taking

WHERE Taking.ID = Student.ID

AND Taking.Num = Course.Num

AND Major = 'EE'

AND Dept = 'CS'

Student Taking

Taking.ID = Student.ID

Taking.Num = Course.Num

Major = 'EE' Dept = 'CS'

Course

Student.Name

Student

Taking

Course.Dept = 'CS'

Course

Student.Name



Taking.ID = Student.ID



Taking.Num = Course.Num

Student.Major = 'EE'

8320302 Databases & Web Services (P. Baumann)

Logical vs Physical Query Plan

 Commonalities:

• Trees representing query evaluation

• Leaves = data (table vs table/index)

• Internal nodes = "operators" over data

 Differences:

Parser – Checker - Views - Logical plan - Rewriter - Physical plan - Code gen. - Execution

Level Operators

Logical plan higher-level, algebraic query language constructs

Physical plan lower-level, operational "access methods"

9320302 Databases & Web Services (P. Baumann)

Physical Query Plan
Parser – Checker - Views - Logical plan – Optim1 - Physical plan – Optim2 - Execution

SELECT Name

FROM Student, Course, Taking

WHERE Taking.ID = Student.ID

AND Taking.Num = Course.Num

AND Major = 'EE'

AND Dept = 'CS'

INDEX-SCAN(Course.Num)

INDEX-NESTED-LOOP-JOIN(Num)

SCAN(Student)

INDEX-SCAN (Taking.ID)

INDEX-NESTED-LOOP-JOIN(ID)

FILTER(major='EE')

PROJECT(Name)

one of manyManyMany possible plans,

assumes particular index situation.

10320302 Databases & Web Services (P. Baumann)

 Consider this equi-join query:

 Naïve, straightforward approach: combine all tuples, pick good ones

Sample Operator: Nested Loop Join

foreach tuple r in R do

foreach tuple s in S do

if ri == sj then add <r,s> to result

SELECT *

FROM Sailor S, Reserves R

WHERE S.sid = R.sid

• Assume there is no index, R small, S big: better R inner or S?

• What if hash index on S?

• …this is what cost-based optimization considers!

Parser – Checker - Views - Logical plan – Optim1 - Physical plan – Optim2 - Execution

11320302 Databases & Web Services (P. Baumann)

Physical Plan Generation

 ManyManyMany possible physical query plans for a given logical plan

 physical plan generator tries to select "optimal" one

• Optimal wrt. response time, throughput

 How are intermediate results passed from children to parents?

• Temporary files

• Evaluate tree bottom-up

• Children write intermediate results to temporary files

• Parents read temporary files

• Iterator interface (next)

Parser – Checker - Views - Logical plan – Optim1 - Physical plan – Optim2 - Execution

12320302 Databases & Web Services (P. Baumann)

Sample Query Plan

SET EXPLAIN ON AVOID_EXECUTE;

SELECT C.customer_num, O.order_num

FROM customer C, orders O, items I

WHERE C.customer_num = O.customer_num

AND O.order_num = I.order_num
for each row in the customer table do:

read the row into C
for each row in the orders table do:

read the row into O
if O.customer_num = C.customer_num then

for each row in the items table do:
read the row into I
if I.order_num = O.order_num then

accept the row and send to user
end if

end for
end if

end for
end for

IBM Informix Dynamic Server

Parser – Checker - Views - Logical plan – Optim1 - Physical plan – Optim2 - Execution

13320302 Databases & Web Services (P. Baumann)

Iterator Interface

 "ONC protocol":

Every operator maintains own execution state,

implements the following methods:

• open():

Initialize state, get ready for processing

• getNext():

Return next tuple in result (or null if no more tuples);

adjust state for delivering subsequent tuples

• close():

Clean up

Parser – Checker - Views - Logical plan – Optim1 - Physical plan – Optim2 - Execution

14320302 Databases & Web Services (P. Baumann)

Ex: Iterator for Table Scan

 open()

• Allocate buffer space

 getNext()

• If no block of R has been read yet:

read first block from disk

return (R==empty ? null : first tuple in block)

• If no more tuple left in current block:

read next block of R from disk

return (R exhausted ? null : first tuple in block)

• Return next tuple in block

 close()

• Deallocate buffer space

Parser – Checker - Views - Logical plan – Optim1 - Physical plan – Optim2 - Execution

Sailors: 22|Dustin|7|45.0|31|Lubber|8|55.5|58|Rusty|10|35.0…

15320302 Databases & Web Services (P. Baumann)

 open()

• R.open(); S.open();

• r = R.getNext();

 getNext()

• repeat until r and s join:
s = S.getNext();
if (s = = null)
{ S.close(); S.open(); s = S.getNext();

if (s = = null) return null;
r = R.getNext();
if (r = = null) return null;

}

• return <r,s>;

 close()

• R.close(); S.close();

Ex: Iterator for Nested-Loop Join
Parser – Checker - Views - Logical plan – Optim1 - Physical plan – Optim2 - Execution

16320302 Databases & Web Services (P. Baumann)

 Optimization = find better, equivalent plan

• Equivalent = produces same result

• Logical level optimization = aka heuristic optimization

• Physical level optimization = aka cost-based optimization

 Two main issues:

• For a given query, how to find cheapest plans?

• How is cost of a plan estimated?

Query Optimization
Parser – Checker - Views - Logical plan – Optim1 - Physical plan – Optim2 - Execution

17320302 Databases & Web Services (P. Baumann)

(I) Heuristic Optimization

 logical tree (more efficient) logical tree

• heuristically apply algebraic equivalences

• heuristics = "looks good, let's try it!"

 Ex: “push down predicates”

major='EE'(Taking.ID=Student.ID(Taking,Student))

Taking.ID=Student.ID(major='EE'(Taking),Student)

Parser – Checker - Views - Logical plan – Optim1 - Physical plan – Optim2 - Execution

Student.Major = 'EE'

Student.Name

Student

Taking

Course

 Taking.ID = Student.ID

 Taking.Num = Course.Num

Course.Dept = 'CS'

18320302 Databases & Web Services (P. Baumann)

(I) Heuristic Optimization
Parser – Checker - Views - Logical plan – Optim1 - Physical plan – Optim2 - Execution

Student.Major = 'EE'

Student.Name

Student

Taking

Course

 Taking.ID = Student.ID

 Taking.Num = Course.Num

Course.Dept = 'CS'

Student.Major = 'EE'

Student.Name

Student

Taking

Course

 Taking.ID = Student.ID

 Taking.Num = Course.Num

Course.Dept = 'CS'

push

down

predicates

19320302 Databases & Web Services (P. Baumann)

(II) Cost-Based Optimization

 Estimate costs, based on physical situation

• concrete table sizes, indexes, data distribution, …

• Find cheapest plan

Parser – Checker - Views - Logical plan – Optim1 - Physical plan – Optim2 - Execution

INDEX-SCAN(Course.Num)

INDEX-NESTED-LOOP-JOIN(Num)

SCAN(Student)

INDEX-SCAN (Taking.ID)

INDEX-NESTED-LOOP-JOIN(ID)

FILTER(major='EE')

PROJECT(Name)

INDEX-SCAN(Course.Num)

INDEX-NESTED-LOOP-JOIN(Num)

SCAN(Student) SCAN (Taking.ID)

NESTED-LOOP-JOIN(ID)

FILTER(major='EE')

PROJECT(Name)

INDEX-SCAN(Course.Num)

INDEX-NESTED-LOOP-JOIN(Num)

FILTER-SCAN(Student.EE) SCAN (Taking.ID)

NESTED-LOOP-JOIN(ID)

PROJECT(Name)

20320302 Databases & Web Services (P. Baumann)

(II) Cost-Based Optimization

 Approach:

• enumerate all (?) possible physical plans that can be derived from given logical plan

• estimate cost for each plan

• pick best (i.e., least cost) alternative

 Ideally: Want to find best plan; practically: Avoid worst plans!

Parser – Checker - Views - Logical plan – Optim1 - Physical plan – Optim2 - Execution

21320302 Databases & Web Services (P. Baumann)

Finale: Execution of Tree

 Recursive evaluation of tree

• Requests go down

• Intermediate result tuples go up

 Often instead: compile into

"database machine code" program

• CPU, GPU, FPGA, ...

Parser – Checker - Views - Logical plan - Rewriter - Physical plan - Optim. - Execution

result = {};
root.open();
do
{

tmp = root.getNext();
result += tmp;

} while (tmp != NULL);
root.close();
return result;

root

22320302 Databases & Web Services (P. Baumann)

 For each relation:

• name, file name, file structure (e.g., Heap file)

• attribute name and type, for each attribute

• index name, for each index

• integrity constraints

 For each index:

• structure (e.g., B+ tree) and search key fields

 For each view:

• view name and definition

 Plus statistics, authorization, buffer pool size, etc.

System Catalogs

Catalogs themselves
stored as relations!

23340151 Big Data & Cloud Computing (P. Baumann)

Sample Catalog Table

attr_name rel_name type position

attr_name Attribute_Cat string 1

rel_name Attribute_Cat string 2

type Attribute_Cat string 3

position Attribute_Cat integer 4

sid Students string 1

name Students string 2

login Students string 3

age Students integer 4

gpa Students real 5

fid Faculty string 1

fname Faculty string 2

sal Faculty real 3

Attribute_Cat:

1st entry?

Key(s)?

24320302 Databases & Web Services (P. Baumann)

 Query tree = internal representation of query

 Logical tree: based on relational algebra

 Physical tree: concrete algorithms („access plans“)

 Optimization = modify tree to perform better

 Logical optimization = heuristic optimization = query rewriting

 Physical optimization = cost-based optimization = black magic

Summary

