Relational Algebra

Molina, Ullman, Widom
Database Management: Complete Book, Chapters 2 \& 5

Algebra

- 2 "fathers of algebra":
- where algebra \equiv theory of equations
\rightarrow Greek Diophantus
- where algebra \equiv rules for manipulating \& solving equations \rightarrow Persian al-Khwarizmi
- Source: Wikipedia

Xorazm, Usbekistan

C,ONSTRUCTOR

 UNIVERSITY
What is "Algebra"?

- Mathematical system consisting of:
- Operands - variables or values from which new values can be constructed
- Operators - symbols denoting procedures that construct new values from given values
- Ex: $((x+7) /(2-3))+x$
- Algebra $\mathrm{A}=(\mathrm{C}, \mathrm{OP})$
-- "simplest" mathematical structure:
- C nonempty carrier set (=value set)

- OP nonempty operation set
- C closed under OP expressions

Selection

- R1 := $\sigma_{\mathrm{c}}(\mathrm{R} 2)$
- C : condition on attributes of R2.
- R1 is all those tuples of R2 that satisfy C.

sid	name login	gpa

53666	Jones jones@cs	3.4
53688	Smith smith@eecs	3.2
53650 Smith smith@math	3.8	

$\sigma_{\text {gpa<3.8 }}($ Students $):$
sid name login gpa

53666 Jones jones@cs 3.4
53688 Smith smith@eecs 3.2

Selection: Observations

- unary operation: 1 table
- conditions apply to each tuple individually
- condition cannot span tuples (how to do that?)
- degree of $\sigma_{C}(R)=$ degree of R
- Cardinality?
- Select is commutative: $\sigma_{\mathrm{C} 1}\left(\sigma_{\mathrm{C} 2}(\mathrm{R})\right)=\sigma_{\mathrm{C} 2}\left(\sigma_{\mathrm{C} 1}(\mathrm{R})\right)$

Projection

- $\mathrm{R} 1:=\pi_{\mathrm{attr}}(\mathrm{R} 2)$
- attr : list of attributes from R2 schema
- For each tuple of R2:
- extract attributes from list attr in order specified (!) \rightarrow R1 tuple
- Eliminate duplicate tuples

sid	name	login	gpa
53666	Jones	jones@cs	3.4
53688	Smith	smith@eecs	3.2
53650	Smith	smith@math	3.8

$\pi_{\text {name,login }}($ Students $)=$
name login
---_-_-_-_-_-_-_
Jones jones@cs
Smith smith@eecs

Projection: Observations

- Unary operation: 1 table
- removes duplicates in result
- Cardinality?
- Degree?
- Project is not commutative
- Sample algebraic law: $\pi_{L 1}\left(\pi_{L 2}(R)\right)=\pi_{L 1}(R)$ if $L 1 \subseteq L 2$
- else incorrect expression, syntax error

Exercises

- $\pi_{\text {Name,login }}\left(\sigma_{\text {gpa }=3.8}(\right.$ Students $\left.)\right)=$?

$$
\begin{array}{lll}
\text { sid } & \text { name login } & \text { gpa } \\
\text {--------------------- } \\
53666 & \text { Jones jones@cs } & 3.4 \\
53688 \text { Smith smith@eecs } & 3.2 \\
53650 \text { Smith smith@math } & 3.8
\end{array}
$$

- "name and rating for sailors with rating > 8"
- Note explicit operation sequence!

Cartesian Product

- project, select operators operate on single relation
- Cartesian product combines two: R3 $=$ R1 \times R2
- Pair each tuple $\mathrm{t} 1 \in \mathrm{R} 1$ with each tuple $\mathrm{t} 2 \in \mathrm{R} 2$
- Concatenation $\mathrm{t} 1, \mathrm{t} 2$ is a tuple of R3
- Schema of R3 = attributes of R1 and then R2, in order
- beware attribute A of the same name in R1 and R2: use R1.A and R2.A

Cross Product ("Cartesian Product")

- Example U := R x S

A	B
1	2
3	4

(a) Relation R

B	C	D
2	5	6
4	7	8
9	10	11

A	$\mid R \cdot B$	$S . B$	C	D
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

(c) Result $R \times S$
(b) Relation S

Natural Join

- $T=R \bowtie S$
- Ex: Reserves $\bowtie_{\text {bid }}$ Sailors
- connect two relations:
- Equate attributes of same name, project out redundant attribute(s)

A	B				
1	2				
3	4	\quad	B	C	D
:---	:---	:---			
2	5	6			
4	7	8			
	9	10	11		

(a) Relation R
(b) Relation S

A	$\mid R . B$	$S . B$	C	D
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

A	B	C	D
1	2	5	6
3	4	7	8

$R \bowtie S$ UNIVERSITY

Generalizing Join

- $T=R \bigotimes_{C} S$
- First build $R \times S$, then apply σ_{C}
- Generalization of equi-join: A θ B where θ one of $=,<, \ldots$
- Today, more general: σ_{C} can be any predicate
- Common join types:
- Left join, right join, natural join, self join, ...

Relational Algebra: Summary

$=$ Mathematical definition of relations + operators

- Query = Algebraic expression
- Relational algebra $A=(R, O P)$ with relation $R=A_{1} \times \ldots \times A_{n}, O P=\{\pi, \sigma, \times\}$
- Projection $\pi_{\text {attr }}(R)=\{r$ r.attr $\mid r \in R\}$
- Selection $\sigma_{p}(R)=\{r \mid r \in R, p(r)\}$
- Cross product: $R_{1} \times R_{2}=\left\{\left(r_{11}, r_{12}, \ldots, r_{21}, r_{22}, \ldots\right) \mid\left(r_{11}, r_{12}, \ldots\right) \in R_{1},\left(r_{21}, r_{22}, \ldots\right) \in R_{2}\right\}$
- Further: set operations, join, ...

Relational Calculus

- Tuple variable = variable over some relation schema
- Query $Q=\{T \mid T \in R, p(T)\}$
- R relation schema, $p(T)$ predicate over T
- Example 1: "sailors with rating above 8"
- Sailors $=$ sid:int \times sname:string \times rating:int \times age:float
$=\{S \mid S \in$ Sailors \wedge S.rating $>8\}$
- Example 2: "names of sailors who have reserved boat \#103":
- Reserves = sid:int \times bid:int \times day:date
$=\{$ S.sname $\mid \exists$ S \in Sailors $\exists R \in$ Reserves: R. sid $=S$. sid \wedge R.bid $=103$ \}

Comparison of Relational Math

- Relational algebra
- set-based formalization of selection, projection, cross product (no aggregation!)
- Operation oriented = procedural = imperative; therefore basis of optimization
- Relational calculus
- Same, but in predicate logic
- Describing result = declarative; therefore basis of SQL semantics
- Equally powerful
- proven by Codd in 1970

