
Databases & Web Services – © P. Baumann

The Web as a Frontend

to Database Services
www.w3schools.com

www.webdesign.com

…

Databases & Web Services – © P. Baumann

 1945 linking microfiches , by Vannevar Bush

 1960s Internet as (D)ARPA project:

fault-tolerant, heterogeneous WAN (cold war!)

term "Hypertext" coined by Ted Nelson at ACM 20th National Conference

 1976 Queen Elizabeth sends her first email. She's the first state leader to do so.

 1980 Berners-Lee at CERN writes notebook program to link arbitrary nodes

 1989 Berners-Lee makes a proposal on information management at CERN

 1990 Berners-Lee’s boss approves purchase of a NeXT cube

Berners-Lee begins hypertext GUI browser+editor and dubs it "WorldWideWeb"

First web server developed

 1991 May 17 – general release of WWW on central CERN machines

 1992 more browsers: Viola & Erwise released

 1994 > 200 web servers by start of year

Mosaic: easy to install, great support, first inline images (“much sexier”)

Andreessen & colleagues form “Mosaic Comm. Corp”; later "Netscape"

History: The Internet and the Web

Databases & Web Services – © P. Baumann

Internet & Web:

Basic Concepts

Databases & Web Services – © P. Baumann

Internet & WWW

 Internet originally 4 basic services, based on TCP & IP:

• telnet, ftp, mail, news

• Later many more: IRC, SSL, NTP, ...

telnet, ftp, ..., http
(application layer)

TCP
(transport layer)

IP
(network layer) Each computer has worldwide unique id

• IP address: n.n.n.n (32 bit IPv4, 128 bit IPv6)

• Domain name: subdomain.host.top-level-domain

• DNS to resolve

 World-Wide Web just another Internet service

• HTTP: Hypertext Transfer Protocol

• HTML: Hypertext Markup Language

• URIs (Uniform Resource Identifiers) [wikipedia]

Databases & Web Services – © P. Baumann

 Structure of an http URI:

• Naming scheme (http)

• Name of host computer + optionally port# (//www.cs.wisc.edu:80) – 80 is default

• Name of resource (~dbbook/index.html)

 Uniform naming schema to identify resources on the Internet

• resource can be anything: index.html, mysong.mp3, picture.jpg

• Syntax: scheme ":" [authority] [path] ["?" query]

• Ex: http://www.cs.wisc.edu/index.html, mailto:webmaster@bookstore.com, telnet:127.0.0.1

Uniform Resource Identifiers

http://www.cs.wisc.edu/~dbbook/index.html

 URL = Uniform Resource Locator (subset of URIs; old term)

• Identification via network "location"

Databases & Web Services – © P. Baumann

HTTP

Databases & Web Services – © P. Baumann

Hypertext Transfer Protocol

 What is a communication protocol?

• Set of rules that defines the structure of messages & communication process

• Examples: TCP, IP, HTTP

 What happens if you click on www.cs.wisc.edu/~dbbook/index.html?

• Client connects to server, transmits HTTP request to server

• Server generates response, transmits to client

• Both disconnect

 HTTP header describes content/action (text = ISO-8859-1), content for data

• RFC 2616

Databases & Web Services – © P. Baumann

HTTP Sample Request/Response

 Client sends: Server responds:

GET ~dbbook/index.html HTTP/1.1
User-agent: Mozilla/4.0
Accept: text/*, image/gif, image/jpeg

HTTP/1.1 200 OK
Date: Mon, 04 Mar 2002 12:00:00 GMT
Server: Apache/1.3.0 (Linux)
Last-Modified: Mon, 01 Mar 2002 09:23:24 GMT
Content-Length: 1024
Content-Type: text/html

<html> <head></head>
<body>
<h1>Burns and Nobble Internet Bookstore</h1>
Our inventory:
<h3>Science</h3>
The Character of Physical Law
...
</body></html>

Try this:
$ telnet google.com 80
GET / HTTP/1.1
<3x newline>

Databases & Web Services – © P. Baumann

HTTP Request Structure

 Request line

• Http method field (GET and POST, more later)

• local resource field

• HTTP version field

GET ~/index.html HTTP/1.1

User-agent: Mozilla/4.0

Accept: text/*, image/gif, image/jpeg

 Type of client

 What types of files (MIME types) the client will accept

• MIME = Multipurpose Internet Mail (!) Extensions = file type naming system

• MIME types other than text/*, image/jpeg, image/gif, image/png

need browser plug-in or helper application

Databases & Web Services – © P. Baumann

HTTP Response Structure

 Status line

• HTTP version: HTTP/1.1

• Status code

• Server message, textual

 Date when the object was created

 Number of bytes being sent

 What type is the object being sent

 …plus potentially many more items, such as server type, server time, etc.

 The payload!

HTTP/1.1 200 OK

Last-Modified: Mon, 01 Mar 2002 09:23:24 GMT

Content-Length: 1024

Content-Type: text/html

•200 OK: Request succeeded
•400 Bad Request: Request could not be fulfilled by the server
•404 Not Found: Requested object does not exist on the server
•505 HTTP Version not supported

<html>…</html>

Databases & Web Services – © P. Baumann

HTTP Doesn't Remember!

 HTTP stateless on the granularity of requests

• No “sessions”

• Every message completely self-contained

• No previous interaction “remembered” by protocol

 Implication for applications:

Any state information (shopping carts, user login information, …)

need to be encoded in every HTTP request and response!

• More later!

Databases & Web Services – © P. Baumann

Conventions

 index.html (Windows: index.htm), .php, ...

• If local path ends with directory, this file is assumed

• Ex: http://www.myserver.foo/Downloads

• If not found: directory listing is displayed

• Put dummy index.html if you don't want this, or disable default in server

 Local path ~name/path

• leads to ~name/public_html/path where name is local user name

Databases & Web Services – © P. Baumann

HTML & Friends

Databases & Web Services – © P. Baumann

HTML Primer

 HTML is a data exchange format

• Unformatted ASCII

• Proper indentation increases readability

• Text interspersed with tags, some with attributes;

usually start and end tag:

• Opening tags: “<” element name “>”

• Closing tags: “</” element name “>”

• Tags can be nested: <h1>my text</h1>

<h1 align="center">headline</h1>

 Many editors automatically generate HTML directly from your document

• But you need to know HTML too, want to generate it lateron!

• And tool's code sometimes has bad quality, cf. Microsoft Word “Save as html”

Databases & Web Services – © P. Baumann

HTML Primer (contd.)

<h1>An important heading</h1>

<h2>A slightly less important heading</h2>

<p>This is the first paragraph.</p>

My link list:

This is a link to W3C

This a link to Peter's page

Go to top

Databases & Web Services – © P. Baumann

<h1>An important heading</h1>

<h2>A slightly less important heading</h2>

<p>This is the first paragraph.</p>

My link list:

This is a link to W3C

This a link to Peter's page

Go to top

 Text structuring

• Headlines

• Paragraphs, text emphasis

 Links

• External

• Relative

• Internal

 Images

 Text structuring (contd.)

• Lists

HTML Primer (contd.)

Databases & Web Services – © P. Baumann

HTML Primer (contd.)

 Text structuring (contd.)

• tables

• row

• column heading

• regular column

<table>

<tr>

<th>Year</th>

<th>Sales</th>

</tr>

<tr>

<td>2000</td>

<td>$18M</td>

</tr>

<tr>

<td>2001</td>

<td>$25M</td>

</tr>

<tr>

<td>2002</td>

<td>$36M</td>

</tr>

</table>

Databases & Web Services – © P. Baumann

HTML Forms

 Common way to communicate data from client to server

 General format of a form:

• <form action=“page.jsp” method=“GET” name=“loginForm”>

<input type=… value=… name=…>

</form>

 Components of an HTML form tag:

• action: URI that handles the content

• method: HTTP GET or POST

• name: Name of the form; can be used in client-side scripts to refer to the form

Databases & Web Services – © P. Baumann

HTML and DOM

<TABLE>

<TBODY>

<TR>

<TD>Shady Grove</TD>

<TD>Aeolian</TD>

</TR>

<TR>

<TD>Over the River, Charlie</TD>

<TD>Dorian</TD>

</TR>

</TBODY>

</TABLE>

Exercise:

draw DOM tree

for some HTML snippet

Databases & Web Services – © P. Baumann

Document Object Model

 HTML document actually describes a tree structure

• ...that becomes manifest as "real" tree only within browser

 So far: how can I describe such a tree for input into rendering engine?

 Dynamic HTML: manipulate tree representation while being displayed

 Document Object Model (DOM) =

platform and language neutral interface that allows programs and scripts to

dynamically access and update content & structure of HTML documents

• Intro: http://www.w3schools.com/htmldom/default.asp

• Definition: http://www.w3.org/TR/DOM-Level-2-HTML

http://www.w3schools.com/htmldom/default.asp
http://www.w3schools.com/htmldom/default.asp
http://www.w3schools.com/htmldom/default.asp
http://www.w3.org/TR/DOM-Level-2-HTML
http://www.w3.org/TR/DOM-Level-2-HTML
http://www.w3.org/TR/DOM-Level-2-HTML
http://www.w3.org/TR/DOM-Level-2-HTML
http://www.w3.org/TR/DOM-Level-2-HTML
http://www.w3.org/TR/DOM-Level-2-HTML
http://www.w3.org/TR/DOM-Level-2-HTML
http://www.w3.org/TR/DOM-Level-2-HTML
http://www.w3.org/TR/DOM-Level-2-HTML

Databases & Web Services – © P. Baumann

 Idea: Separate display style from structure & contents

• W3C recommendation = standard

 File reference to CSS, placed in HTML <head> section

• <link rel=“style sheet” type=“text/css” href=“books.css”>

 Media specific style sheets

• <link rel="stylesheet" type=“text/css” media="screen" href="website.css">
<link rel="stylesheet" type=“text/css” media="print, embossed" href="print.css">
<link rel="stylesheet" type=“text/css” media="aural" href="speaker.css">

CSS: Cascading Style Sheets

Databases & Web Services – © P. Baumann

 Effect on HTML page display:

• same effect as:
<h1 style=”font-family:Arial,sans-serif”>

but applies to all <h1>

• Style used in a tag:
 is red

(overriding a default & a definition in CSS)

• Style can be used with any tag:
<p class=”special”>

body { font-family:Arial,sans-serif; }

a:link { color:red }

.special { color:green; font-size:large; }

CSS Syntax

 CSS syntax (simplified)

• css-file ::= css-def*

• css-def ::= selector "{" (prop ":" val)* "}"

• selector ::= tag
| [tag] "." class
| [tag] ":" pseudo

• elem ::= STRING

• class ::= STRING

• pseudo ::= “link" | "visited" | …

• prop ::= <predefined prop names>

• val ::= STRING
| NUMBER ["px" | "cm" | …]

Databases & Web Services – © P. Baumann

Internet & WWW

 Internet originally 4 basic services, based on TCP & IP:

• telnet, ftp, mail, news

• Later many more: IRC, SSL, NTP, ...

telnet, ftp, ..., http
(application layer)

TCP
(transport layer)

IP
(network layer)

 Each computer has worldwide unique id

• IP address: n.n.n.n (32 bit IPv4, 128 bit IPv6)

• Domain name: subdomain.host.top-level-domain

• DNS to resolve

 World-Wide Web just another Internet service

• HTTP: Hypertext Transfer Protocol

• HTML: Hypertext Markup Language

• URIs (Uniform Resource Identifiers)

[wikipedia]

Databases & Web Services – © P. Baumann

Hypertext Transfer Protocol

 What is a communication protocol?

• Set of rules that defines the structure of messages & communication process

• Examples: TCP, IP, HTTP

 What happens if you click on www.cs.wisc.edu/~dbbook/index.html?

• Client connects to server, transmits HTTP request to server

• Server generates response, transmits to client

• Both disconnect

 HTTP header describes content/action (text = ISO-8859-1), content for data

• RFC 2616

Databases & Web Services – © P. Baumann

HTTP Request Structure

 Request line

• Http method field (GET and POST, more later)

• local resource field

• HTTP version field

GET ~/index.html HTTP/1.1

User-agent: Mozilla/4.0

Accept: text/*, image/gif, image/jpeg

 Type of client

 What types of files (MIME types) the client will accept

• MIME = Multipurpose Internet Mail (!) Extensions = file type naming system

• MIME types other than text/*, image/jpeg, image/gif, image/png

need browser plug-in or helper application

Databases & Web Services – © P. Baumann

HTTP Response Structure

 Status line

• HTTP version: HTTP/1.1

• Status code

• Server message, textual

 Date when the object was created

 Number of bytes being sent

 What type is the object being sent

 …plus potentially many more items, such as server type, server time, etc.

 The payload!

HTTP/1.1 200 OK

Last-Modified: Mon, 01 Mar 2002 09:23:24 GMT

Content-Length: 1024

Content-Type: text/html

•200 OK: Request succeeded
•400 Bad Request: Request could not be fulfilled by the server
•404 Not Found: Requested object does not exist on the server
•505 HTTP Version not supported

<html>…</html>

Databases & Web Services – © P. Baumann

Conventions

 index.html (Windows: index.htm), .php, ...

• If local path ends with directory, this file is assumed

• Ex: http://www.myserver.foo/Downloads

• If not found: directory listing is displayed

• Put dummy index.html if you don't want this, or disable default in server

 Local path ~name/path

• leads to ~name/public_html/path where name is local user name

Databases & Web Services – © P. Baumann

HTTP Sample Request/Response

 Client sends: Server responds:

GET ~dbbook/index.html HTTP/1.1
User-agent: Mozilla/4.0
Accept: text/*, image/gif, image/jpeg

HTTP/1.1 200 OK
Date: Mon, 04 Mar 2002 12:00:00 GMT
Server: Apache/1.3.0 (Linux)
Last-Modified: Mon, 01 Mar 2002 09:23:24 GMT
Content-Length: 1024
Content-Type: text/html

<html> <head></head>
<body>
<h1>Burns and Nobble Internet Bookstore</h1>
Our inventory:
<h3>Science</h3>
The Character of Physical Law
...
</body></html>

Try this:
$ telnet google.com 80
GET / HTTP/1.1
<3x newline>

Databases & Web Services – © P. Baumann

HTML Primer

 HTML is a data exchange format

• Unformatted ASCII

• Proper indentation increases readability

• Text interspersed with tags, some with attributes;

usually start and end tag:

• Opening tags: “<” element name “>”

• Closing tags: “</” element name “>”

• Tags can be nested: <h1>my text</h1>

<h1 align="center">headline</h1>

 Many editors automatically generate HTML directly from your document

• But you need to know HTML too, want to generate it lateron!

• And tool's code sometimes has bad quality, cf. Microsoft Word “Save as html”

Databases & Web Services – © P. Baumann

HTML Primer (contd.)

<title>My first HTML document</title>

<h1>An important heading</h1>

<h2>A slightly less important heading</h2>

<p>This is the first paragraph.</p>

My link list:

This is a link to W3C

This a link to Peter's page

Go to top

 Text structuring

• Title (for browser title bar)

• Headlines

• Paragraphs, text emphasis

 Links

• External

• Relative

• Internal

 Images

• use alt, width, height attributes!

 Text structuring (contd.)

• Lists

Databases & Web Services – © P. Baumann

HTML Primer (contd.)

 Text structuring (contd.)

• tables

• row

• column heading

• regular column

<table>

<tr>

<th>Year</th>

<th>Sales</th>

</tr>

<tr>

<td>2000</td>

<td>$18M</td>

</tr>

<tr>

<td>2001</td>

<td>$25M</td>

</tr>

<tr>

<td>2002</td>

<td>$36M</td>

</tr>

</table>

Databases & Web Services – © P. Baumann

CSS: Cascading Style Sheets

 Idea: Separate display style from structure & contents

• W3C recommendation = standard

 Define appearance of particular items

• HTML element:

• Self-defined:

• Special:

 All HTML code of site references

common CSS file Corporate Design

body { font-family: Arial,sans-serif; }

a:link { color: red; }

.special { color: green; font-size: large; }

<link rel=“style sheet” type=“text/css” href=“books.css”>

<html>
<body>

<h1>Title in Arial, but bold</h1>
<div id=“special”>I am different</div>
link in red

</body>
</html>

Databases & Web Services – © P. Baumann

Summary: WWW and HTML

 WWW: another Internet service,

aimed at easily traversing interconnected documents

 Protocol: HTTP, data exchange format: HTML

• captures document structure according to fixed schema

 Browser = program that

• gets page address; fetches HTML (+ likely additional files); renders page for display

 Separation of concerns:

• HTML for structure and contents

• CSS for layout

• JavaScript for Dynamic HTML (see next: AJAX)

Databases & Web Services – © P. Baumann

HTTP: GET, POST ...and the REST

Databases & Web Services – © P. Baumann

GET Requests

 HTTP defines request types: GET, POST, PUT, DELETE, …

 Request modification through key/value pairs

• ?

• &

 Client sends:

http://acme.com/srv ? mybasket=6570616275 & article=656e44204456

Databases & Web Services – © P. Baumann

Request Parameters: How Passed?

 GET parameters: URL text

• Can be cached, bookmarked

• Reload / back in history harmless

• Data visible in URL

 POST parameters: HTTP message body

• Not cached, bookmarked

• Reload / back in history re-submits

• Data not visible,

not in history,

not in server logs

GET srv?k1=v1&k2=v2 HTTP/1.1

POST srv HTTP/1.1

k1=v1&k2=v2

http://www.w3schools.com/tags/ref_httpmethods.asp

http://www.w3schools.com/tags/ref_httpmethods.asp
http://www.w3schools.com/tags/ref_httpmethods.asp
http://www.w3schools.com/tags/ref_httpmethods.asp

Databases & Web Services – © P. Baumann

REST

 REST

= Representational State Transfer

• Resource + URI

• Web = one address space

• representation

• Client requests follow xlink

• new state

 Not a standard nor product,
but „architectural style“

• = way to craft Web interface

 URI defines resource

being requested

• Consistent design philosophy

• easy to follow

 Relies on four basic

http operations:

• GET – Query

• POST – Update

• PUT – Add

• DELETE – Delete

[Thomas Roy Fielding, 2002]

Databases & Web Services – © P. Baumann

Sample RESTful Application

 Scenario: online shop

 Fetch information: "shopping basket with id 5873"

• Response:

• Client can follow links, that changes its state

• No side effect (status change) on server side

GET /shoppingBasket/5873

<shoppingBasket xmlns:xlink="http://www.w3.org/1999/xlink">

<customer xlink:href="http://shop.oio.de/customer/5873">5873</customer>

<position nr="1" amount="5">

<article xlink:href="http://shop.oio.de/article/4501" nr="4501">

<description>lollypop</description>

</article>

</position>

<position nr="2" amount="2">... </position>

</shoppingBasket>

Databases & Web Services – © P. Baumann

Sample RESTful Application (contd.)

 Place order:

"add article #961 to shopping basket #5873"

• Changes server state

POST /shoppingBasket/5873

articleNr=961

PUT /article

<article>

<description>Rooibush tea</description>

<price>2.80</price>

...

</article>

HTTP/1.1 201 OK

...

http://shop.oio.de/article/6005

DELETE /article/6005

 Add article

• Again, changes server state

• Returns new id

 Delete article

• Server state change

Databases & Web Services – © P. Baumann

Security

 REST: typed requests, firewall can judge good for security

hermes.oio.de - - [26/Nov/2002:12:43:07 +0100] "GET /shoppingBasket/6 HTTP/1.1" 200

hermes.oio.de - - [26/Nov/2002:12:43:08 +0100] "GET /article/12 HTTP/1.1" 200

hermes.oio.de - - [26/Nov/2002:12:43:08 +0100] "GET /article/5 HTTP/1.1" 200

hermes.oio.de - - [26/Nov/2002:12:43:09 +0100] "POST /shoppingBasket/6 HTTP/1.1" 200

hermes.oio.de - - [26/Nov/2002:12:43:13 +0100] "POST /shoppingBasket/6 HTTP/1.1" 200

hermes.oio.de - - [26/Nov/2002:12:43:14 +0100] "GET /Order/3 HTTP/1.1" 200

 admins much more inclined to open firewall for REST services

than for eg SOAP

Databases & Web Services – © P. Baumann

REST: How Powerful?

 Local path uses historical directory syntax strict hierarchy

• Standard Web servers, proxies etc can cache

 What breaks hierarchies

• Multi-dimensional indexing – Lat/Long/height/time has no particular sequence

• SQL: joins – join tables come in no particular sequence

• SQL: complex predicates – .../filter1/filter2/filter3/... cannot express AND / OR / NOT

• SQL: nested queries

 Remedy: old-school KVP

• So much more powerful, but no caching etc.

http://.../service-endpoint/MyShop/ShoppingBaskets/14731/Article/67236

http://.../service-endpoint/MyShop?q=select-from-where

Databases & Web Services – © P. Baumann

REST: Appraisal

 Strengths

• Simple paradigm; Web = RESTful resource

• Caching (except POST)

• Proven base stds: http, URI, MIME, XML/JSON

• Oops: cookies break REST paradigm

 Weaknesses

• Assumes addressability by path + identifier (URI!) = single-root hierarchies
only fraction of SQL power

• Schema to represent all URIs is complex

• response data structure definition outside REST

• limited support for HTTP PUT & DELETE in popular development platforms

• Power of http headers not accessible via browser URL

Databases & Web Services – © P. Baumann

Summary

 Web services: client invokes function on server

• Remote Procedure Call (RPC)

 Web World is evolving

• New paradigms emerging (and some disappearing)

• GET/KVP, POST/XML, SOAP, REST, JSON, OpenAPI, ...

 Service protocol independent from database query languages!

• GET/KVP:

• POST:

• REST

http:/acme.com/access-point?q=select%20*%20from...

http:/acme.com/access-point

q=select *from...

Databases & Web Services – © P. Baumann

Interaction:

HTML Forms, AJAX

Databases & Web Services – © P. Baumann

GET Requests

 Request = “command” sent by client to server = text string

• Ex:

 HTTP offers “commands” aka “request types”

• GET obtain information

• POST upload

• PUT create new object

• DELETE well…

• Etc.

http://acme.com/srv/index.html

Databases & Web Services – © P. Baumann

How to Pass Back Parameters

from Client to Server?

 Client: HTML form

<?

echo 'You have entered ' . $_GET['wordKey'];

?>

<form method='GET' action='http://.../input.php'>

word:

<input name='wordKey' type='text'>

<input type='submit' value='Go'>

</form>

 Server: languages typically provides parameters in an array

Databases & Web Services – © P. Baumann

Request Parameters: How Passed?

 Key/value pairs (KVPs) appended to service URL

• URL:

• Server sees: all following “?”, separator “&”

 GET: appended to URL

• Can be cached & bookmarked; reload / back in history ok

• Data visible in URL

 POST: in HTTP message body

• Not cached, bookmarked; reload / back in history re-submits

• Data not visible, not in history, not in server logs

GET srv?k1=v1&k2=v2 HTTP/1.1

POST srv HTTP/1.1

k1=v1&k2=v2

http://www.w3schools.com/tags/ref_httpmethods.asp

http://acme.com/srv ? mybasket=6570616275 & article=656e44204456

http://www.w3schools.com/tags/ref_httpmethods.asp
http://www.w3schools.com/tags/ref_httpmethods.asp
http://www.w3schools.com/tags/ref_httpmethods.asp

Databases & Web Services – © P. Baumann

We Want More!

 Challenge: want more interactivity than "click link / reload complete page“

• Early attempt: HTML iframe

 Microsoft IE5 XMLHttpRequest object part of std DOM

• Outlook Web Access, supplied with Exchange Server 2000

• Windows: ActiveX control Msxml2.XMLHTTP (IE5), Microsoft.XMLHTTP (IE6)

 "AJAX" coined by Jesse James Garnett, 2005

• made popular in 2005 by Google Suggest

• start typing into Google's search box list of suggestions

Databases & Web Services – © P. Baumann

AJAX

 AJAX = Asynchronous Javascript and XML

• web development technique

 Goal: increase interactivity, speed, functionality, usability

• Avoid complete page reload small data loads more responsive

• asynchronous: c/s communication independent from normal page loading

 Key idea: Client DOM manipulated to dynamically display & interact

• Inject response into any place(s) of DOM tree

 standardized components, supported by all major browsers:

• JavaScript, XML / JSON, HTML, CSS

Databases & Web Services – © P. Baumann

AJAX by Example

Databases & Web Services – © P. Baumann

Traditional Style

 Client:

<?

echo 'You have entered ' . $_GET['wordKey']

. ' and your IP is: ' . $_SERVER['REMOTE_ADDR'];

?>

<form method='GET' action='http://.../ajax-ex.php'>

word:

<input name='wordKey' type='text'>

<input type='submit' value='Go'>

</form>

You have entered Moribundus, and your IP is: 127.0.0.1

 Server:

 Client, after page reload:

Databases & Web Services – © P. Baumann

Step 1: Avoid Complete Page Reload

function callBack()

{ var SERVICE = 'http://.../ajax-ex.php';

var req = new XMLHttpRequest();

var val = document.forms['wordForm'].wordKey.value;

req.open('GET', SERVICE+'?wordKey='+val, true);

req.setRequestHeader('Content-Type',

'application/x-www-form-urlencoded');

req.send(null);

req.onreadystatechange = function()

{ if (req.readyState == 4)

document.forms['wordForm'].result.innerHtml =

req.responseText;

}

}

<form name='wordForm'>

word:

<input name='wordKey' type='text'>

<input type='button' value='Go' onClick='JavaScript:callBack()'>

<div id='result'></div>

</form>

word: _________________

You have entered Moribundus, and your IP is: 127.0.0.1

0 request not initialized

1 request set up

2 request sent

3 request in process

4 request complete

Databases & Web Services – © P. Baumann

Step 2: Avoid SUBMIT Button

 Before: just re-implemented submit; now: allow c/s activity at any time

• Event handlers

 Ex: suggest keywords with every char typed

• No submit button!

<? ...

$query = "select entry from Airports

where entry like '" . $_GET['wordKey'] . "%'";

$result = mysql_query($query);

while ($row = mysql_fetch_array($result))

{

print $row['entry'] . ",";

}

?>

<input name='wordKey' onKeyUp='JavaScript:callBack()'>

How to ship back

& inject data?

Databases & Web Services – © P. Baumann

JSON

 JSON = JavaScript Object Notation

• Lightweight data interchange format

• MIME type: application/json (RFC 4627)

• text-based, human-readable

 alternative to XML use

• Subset of JavaScript's object literal notation

• 10x faster than XML parsing

• _way_ easier to handle

• JSON parsing / generating code readily available for many languages

"JSON is XML without garbage"

Databases & Web Services – © P. Baumann

<? echo '{' + '"firstName":' + obj.firstName + ','

+ '"lastName":' + obj.lastName + ','

… + '}'

?>

JSON Example

 Server

sends:

req.onreadystatechange=function()

{ if(req.readyState==4)

{ var p = eval("(" + req.responseText + ")");

document.myForm.firstName.value = p.firstName;

}

}

 JSON string

sent from

server:

 response

parsing code:

{ "firstName": "John",

"lastName": "Smith",

"address":

{ "streetAddress": "21 2nd Street",

"city": "New York",

"state": "NY",

"postalCode": 10021

},

"phoneNumbers": ["212 732-1234", "646 123-4567"]

}

Databases & Web Services – © P. Baumann

JSON Security Concerns

 JavaScript eval()

• most JSON-formatted text is also syntactically legal JavaScript code!

• built-in JavaScript eval() function executes code received

 Invitation to hack:

embed rogue JavaScript code (server-side attack),

intercept JSON data evaluation (client-side attack)

• Safe alternative: parseJSON() method,

see ECMAScript v4 and www.json.org/json.js

 Cross-site request forgery

• malicious page can request & obtain JSON data belonging to another site

Databases & Web Services – © P. Baumann

Appraisal: AJAX Advantages

 Reduced bandwidth usage

• No complete reload/redraw, HTML generated locally, only actual data transferred

payload coming down much smaller in size

• Can load stubs of event handlers, then functions on the fly

 Separation of data, format, style, and function

• encourages programmers to clearly separate methods & formats:

Raw data / content normally embedded in XML

webpage HTML / XHTML

web page style elements CSS

Functionality JavaScript + XMLHttp + server code

Databases & Web Services – © P. Baumann

 Response time concerns

from network latency

• Web transfer hidden effects from
delays sometimes difficult to understand
for users

 Reliance on JavaScript

• JavaScript compatibility issue
blows up code;

Remedy: libraries such as prototype

• IDE support used to be poor, changing

• Can switch off JavaScript in my browser

 Security

• Can fiddle with data getting into browser

Appraisal: AJAX Disadvantages

 Browser integration

• dynamically created page

not registered in browser history

• bookmarks

 Search engine optimization

• Indexing of Ajax page contents?

• (not specific to Ajax, same issue with

all dynamic data sites)

 Web analytics

• Tracking of accessing page vs portion

of page vs click?

Databases & Web Services – © P. Baumann

Summary

 AJAX allows to add desktop flavour to web apps

• JSON as lightweight, fast alternative to XML

 Web programming paradigm based on existing, available standards

 Issues: browser compatibility, security, web dynamics

 Many usages:

• real-time form data validation; autocompletion; bg load on demand; sophisticated user

interface controls and effects (trees, menus, data tables, rich text editors, calendars,

progress bars, ...); partial submit; mashups (app mixing); desktop-like web app

Databases & Web Services – © P. Baumann

Resources

 Books:

• Michael Mahemoff: Ajax Design Patterns. O'Reilly, 2006

• Mark Pruett: Ajax and Web Services. O'Reilly, 2006

 Web:

• www.openajaxalliance.org/

• w3schools.org/ajax

• Mozilla Developer Center: AJAX:Getting Started

• developer.mozilla.org/en/docs/AJAX:Getting_Started

• www.json.org

Databases & Web Services – © P. Baumann

Tool Support: Examples

 jQuery, http://jquery.com/

 AJAX:

$.ajax({

url: "/api/getWeather",

data: {

zipcode: 97201

},

success: function(data) {

$("#weather-temp").html("" + data + " degrees");

}

});

$("button.continue").html("Next Step...")

http://jquery.com/

Databases & Web Services – © P. Baumann

Kore rawa e rawaka te reo kotahi

browser

DBMS

HTML

CSS

SQL

JavaScript

python

business logic

