The Relational Model

Ramakrishnan & Gehrke, Chapter 3

Databases & Web Services — © P. Baumann 1

C>ONSTRUCTOR
UNIVERSITY

A SQL query walks up to two

tables in a restaurant and asks:
“Mind if | join you?”

C>ONSTRUCTOR
UNIVERSITY

Relational Database: Definitions

Technically: Relation made up of 2 parts:

Schema: specifies name of relation, plus name and type of each column*—]
 Ex: Students(sid: string, name: string, login: string, gpa: real)

does not
change often

Instance: a table, with rows and columns . tcr:la?ges all
. # rows = cardinality, # fields = degree / arity € time
- Mathematica”y: Students sid | name| login gpa

« LetA1, ..., An (n>0) be value sets, called attribute domains
o relaionRc A x...xA ={(a,....a)) | a;€A,, ...,a, €A, } \
. . tuple attribute
Can think of a relation as a set of rows or tuples

» NO!M Duplicates allowed — multi-set

 atomic attribute types only — no fancies like sets, trees, ...

Relational database: a set of relations

Databases & Web Services — © P. Baumann 2

C>ONSTRUCTOR
UNIVERSITY

Example Instance of Students Relation

53666 Jones jones(cs 3.4
53688 Smith smith@eecs 3.2
53650 Smith smith@math 3.8

= Cardinality = 3, degree = 4, all rows distinct

= Do all columns in a relation instance have to be distinct?

Databases & Web Services — © P. Baumann 3

C>ONSTRUCTOR
UNIVERSITY

Querying Relational Databases

= A major strength of the relational model: simple, powerful querying of data

« Data organised in tables, query results are tables as well
» Small set of generic operations, work on any table structure

= Query describes structure of result ("what"),
not algorithm how this result is achieved ("how")

 data independence, optimizability

= Queries can be written intuitively,
and the DBMS is responsible for efficient evaluation

The key: precise (mathematical) semantics for relational queries

Allows the optimizer to extensively re-order operations,
and still ensure that the answer does not change

Databases & Web Services — © P. Baumann 4

C>ONSTRUCTOR
UNIVERSITY

SQL, Structured English Query Language

= “gll students with sid name login gpa

GPA less than 3.6 53666 Jones jones(cs 3.4

SELECT * 53688 Smith smith@eecs 3.2
FROM Students S —_——

WHERE S.gpa<3.6

= “..names and logins...".
SELECT S.name, S.login

Jones jones(cs
Smith smith@eecs

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

SQL Joins: Querying Multiple Relations

= What does the following query compute?

e SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade="A”

= Given the following instances of Students and Enrolled:

sid name login gpa sid cid grade
53666 Jones jones(@cs 3.4 53831 CarnaticlO01l C
53688 Smith smith@eecs 3.2 53831 Reggae203 B
53650 Smith smith@math 3.8 53666 Topologyll2 A
53688 Historyl05 B

= We get: S .name E.cid

Jones Topologyll2

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

DML: Adding and Deleting Tuples

DML = Data Manipulation Language = SELECT + ...

insert a single tuple:

INSERT INTO Students(sid, name, login, gpa)
VALUES (53688, ‘Smith’, ‘smith@ee’, 3.2)
delete all tuples satisfying some condition:

DELETE FROM Students S
WHERE S.name = ‘Smith’

change all tuples satisfying some condition:

UPDATE Students S
SET gpa =3.0
WHERE S.name = ‘Smith’

SQL = DML v DDL

Databases & Web Services — © P. Baumann 7

C>ONSTRUCTOR
UNIVERSITY

DDL: Maintaining the Schema

= DDL = Data Definition Language

» Create / delete / change relation definitions; inspect schema
* type (domain) of each attribute is specified, enforced by DBMS
 Standard attribute types: integer, float(p), char(n), varchar(n), long

= Example 1: Create Students relation

CREATE TABLE Students(
sid: char(20), name: char(20), login: char(10), gpa: float(2)

)
= Example 2: Enrolled table for students' courses

CREATE TABLE Enrolled(
sid: char(20), cid: char(20), grade: char(2)

) SQL = DML U DDL

Databases & Web Services — © P. Baumann 8

C>ONSTRUCTOR
UNIVERSITY

Integrity Constraints

= |ntegrity constraint = IC
= condition that must be true for any instance of the database

* e.¢., domain constraints
 |Cs are specified when schema is defined
 |Cs are checked when relations are modified

= Alegal instance of a relation is one that satisfies all specified ICs

» DBMS should not allow illegal instances

= |f the DBMS checks ICs, stored data is more faithful to real-world meaning

 Avoids data entry errors, too!

Databases & Web Services — © P. Baumann]

C>ONSTRUCTOR
UNIVERSITY

Primary Key Constraints

= A setof fields is a key for a relation if :

1. No two distinct tuples can have same values in all key fields, and

2. This is not true for any subset of the key.

= Part 2 false — superkey

* |f>1 key for relation,
one of the keys is chosen (by DBA) to be primary key

= Example:

* sid key for Students (what about name?)

» The set{sid, gpa} is a superkey

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Primary and Candidate Keys in SQL

= Possibly many candidate keys (specified using UNIQUE),
one of which is chosen as the primary key

CREATE TABLE Enrolled

= “For a given student and course, there is (sid CHAR(20)
a single grade’ cid CHAR(20),
VS. grade CHAR(2),
“Students can take only one course, and PRIMARY KEY (sid,cid))
receive a single grade for that course;
further, no two students in a course CREATE TABLE Enrolled
receive the same grade.” (sid CHAR(20)
cid CHAR(20),
* Used carelessly, an IC can preventthe grade CHAR(2),
storage of database instances that arise in PRIMARY KEY (sid),

practice! UNIQUE (cid, grade))

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Foreign Keys, Referential Integrity

= Foreign key = set of fields in one relation that is used to ‘refer’ to a tuple
In another relation

» Must correspond to primary key of the second relation, like a “logical pointer’

= Example: sid is a foreign key referring to Students:
Enrolled(sid: string, cid: string, grade: string)

If all foreign key constraints are enforced, referential integrity is achieved, i.e., no
dangling references.

= data model w/o referential integrity?

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Foreign Keys in SQL

= Only students listed in the Students relation should be allowed to enroll

for courses
CREATE TABLE Enrolled
(sid CHAR(20), cid CHAR(20), grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid) REFERENCES Students)

Problem?

Enrolled Students
sid cid grade
53831 CarnaticlO1l C
53831 Reggae203 B
3666 Topologyll2 A
(53680 Histaryl0s

sid name login gpa

Jones jones(@cs 3.4

7 53688) Smith smith@eecs 3.2
53650 Smith smith@math 3.8

Problem?

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Enforcing Referential Integrity

Students and Enrolled.
Enrolled. sid = foreign key referencing Students

What if Enrolled tuple with non-existent student id is inserted?
* Rejectit

What should be done if a Students tuple is deleted?

Also delete all Enrolled tuples that refer to it

Disallow deletion of a Students tuple that is referred to
Set Enrolled.sid tuples that refer to it to a default sid
Set Enrolled.sid tuples that refer to it to a special value NULL, aka ‘unknown’ or “inapplicable’

Similar if primary key of Students tuple is updated

» Never ever do that, anyway!

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Referential Integrity in SQL

= SQL/92 and SQL:1999 support all 4

options on deletes and updates:
¥ ¥ CREATE TABLE Enrolled

- Defaultis NO ACTION (sid CHAR(20),
(delete/update is rejected) cid CHAR(20),

. CASCADE grade CHAR(2), o
(also delete all tuples that refer to PRIMARY KEY (sid,cid),
deleted tuple) FOREIGN KEY (sid)

REFERENCES Students

* SETNULL ON DELETE CASCADE
SET DEFAULT ON UPDATE SET DEFAULT)
(sets foreign key value of referencing
tuple)

treat corresponding Enrolled tuple
when Students (!) tuple is deleted

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Where do ICs Come From?

= based upon the semantics of the real-world enterprise
that is being described in the database relations

= can check a database instance to see if an IC is violated,
but can NEVER infer that an IC is true by looking at an instance

« AnICis a statement about all possible instances!

* From example, we know name is not a key, but the assertion that sid is a key is given
to us

= Key and foreign key ICs are the most common;
more general ICs supported too

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Logical DB Design: ER to Relational

= Entity sets to tables: Q
« ERattribute — table attribute

(can do that because ER constrained Employees
to simple types, same as in relational model)

CREATE TABLE Employees
(ssn CHAR(11),
name CHAR(20),
| lot INTEGER,
= Best practice (not followed by some books): priMARY KEY (ssn))

Add “abstract” identifying key attribute

 Declare key attribute “Primary key”

. CREATE TABLE Employees
No further semantics (sid INTEGER,
» System generated, no change, no reuse ssn CHAR(11) UNIQUE,

« use only this as primary key & for referencing
PRIMARY KEY (sid))

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Relationship Sets to Tables

= |n translating a relationship set to a CREATE TABLE Works_In
relation, attributes of the relation must ~ (ssn CHAR(11),

include: did INTEGER,
since DATE,
 Keys for each participating entity set PRIMARY KEY (ssn, did),
(as foreign keys) FOREIGN KEY (ssn)
* a superkey for the relation REFERENCES Employees,
« All descriptive attributes FOREIGN KEY (did)

REFERENCES Departments)

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Review: Key Constraints

= Each dept has at most one
manager, according to the @

Employees | Manages Departments

key constraint on Manages

T e —o
*| |o *I\|» *e| |*f\|le| Translation to
*\e * * e relational model?
\'j/U W V/U y ...see next!
1-to-1 1-to-Many Many-to-1 Many-to-Many

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR

ER Diagrams with Key Constraints

= Map relationship to table:
* did key now

» Separate tables for
Employees and
Departments

= We know each department
has unique manager
— can combine
Manages and Departments

Databases & Web Services — © P. Baumann

UNIVERSITY
Game G @namo)
@
Employees (— Departments

CREATE TABLE Manages
(ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Departments)

CREATE TABLE Dept_Mgr
(did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11),
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees)

20

C>ONSTRUCTOR
UNIVERSITY

Participation Constraints in SQL

= Review: Participation Constraints

 Does every department have a manager?

?

— participation constraint Employees Departments
« Every did value in Departments table @,
must appear in a row of the Manages table

(with non-null ssn value!)
CREATE TABLE Manages

(did INTEGER,

= can capture participation constraints dname CHAR(20),
involving one entity set in a binary relationship budget REAL,
ssn CHAR(11) NOT NULL,
* Dbut little else (w/o CHECK constraints) since DATE,
PRIMARY KEY (did),
- | FOREIGN KEY (ssn)
= caution about hacks! EEE 0 Bl

ON DELETE NO ACTION)

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Translating Weak Entity Sets

= Review: weak entity:
identifiable uniquely only by owner entity

one-to-many relationship set @ & -
(1 owner, many weak entities) & | #® Q@ ’

Employees e Dependents

Weak entity:
total participation in identifying relationship set
= Weak entity set & identifying relationship set CREATE TABLE Dep_Policy
: (pname CHAR(20),
—> Slngle table age INTEGER,
cost REAL,
= \When owner entity is deleted: ssn CHAR(11) NOT NULL,
. PRIMARY KEY (pname, ssn),
delete all owned weak entities FOREIGN KEY (ssn)
REFERENCES Employees

ON DELETE CASCADE)

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Example

@ ®

Employees Works i Departments
T AR

Create table Employees(| Create table Works_in(Create table Departments(
eid: int, eid: int unique, did_:int,
ssn: int unique, did_ int, did: int unique,
name: char(100), since: date dname: char(100),
lot: int primary key(eid,did_) budget: money
primary key (eid) foreign key (eid) references Employees primary key (did_)
) foreign key (did_) references Departments)

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Example

@ @

Employees Works i Departments
T AR

Create table Employees(| Create table Works_in(Create table Departments(
eid: int, eid: int unique, did_: int,
ssn: int unique, did_ int, did: int unique,
name: char(100), since: date dname: char(100),
lot: int primary key(eid,did_) budget: money
primary key (eid) foreign key (eid) references Employees primary key (did_)
) foreign key (did_) references Departments)
)
eid ssn name lot eid did_ since did_ did name budget
1 123 John Doe 5 1 2 2018-12-01 1 5 Sales 500
2 456 Jane Fox 17 1 2017-01-01 2 17 Accounting 170
3 789 Charlie Brown 42 2 2 2015-06-01 3 99 Production 420

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Example / Optimized

@ ®

Employees Works i Departments
T AR

= Create table Employees(= Create table Departments(
eid: int, did_: int,
ssn: int unique, did: int unique,
name: char(100), dname: char(100),
lot: int, budget: money
since: date primary key (did_)
did_: int)
primary key (eid)

foreign key (did_)
references Departments

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR

]] UNIVERSITY
ISA Hierarchies
= HISA E: every H entity is also a E entity D
(“H inherits from E") &D
 Hattributes = E attributes + plus maybe more Employees

* H subclass, E superclass /K
= Mapping to Relations Chourly_wages> S

e Several choices

Hourly _Emps Contract_Emps

e (Constraints determine

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR

0 Q @ UNIVERSITY
ISA — Tables <2
XY
ISA
Q& O
AB cD
_ XY id xy _
= Alt1: AB id ab 1 CD id ¢ d
1 .. 5 2 ..
3 .. 3 4
4
= At 2: ABXY i;jabxy CDXY;dcdxy
3. ... 4
. . ABCDXY id a bc d x y N
Alt 3: D 573w Insert”
2 nn98 67 Select AB?
Select XY?

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

ISA — Relations: Discussion

Alt 1: separate relation per entity set
— 3 relations: Employees, Hourly_Emps, Contract_Emps

» Every employee recorded in Employees
» must delete Hourly_Emps tuple if referenced Employees tuple is deleted

 Queries on all Employees easy, on Hourly_Emps require join

Alt 2: relations only for subclass entity sets
— 2 relations: Hourly_Emps, Contract_Emps

e Hourly_Emps: ssn, name, lot, hourly_wages, hours_worked Overlap?

 Each employee must be in one of these two subclasses Covering?

Alt 3: one big relation — 1 relation: Emps

Alt 4. PostgreSQL inheritance:
CREATE TABLE Contract_Emps (contractid: int) INHERITS (Employeesg Not a solution in exam!]

Databases & Web Services — © P. Baumann 28

https://www.postgresql.org/docs/current/ddl-inherit.html

C>ONSTRUCTOR
UNIVERSITY

ISA — Relations: Schemas

>
= Alt 1: separate relation per entity set AN
XY (id, X, y) Q@J 2@9@

AB (id, a, b, FOREIGN KEY (id) REFERENCES XY(id))
CD (id, ¢, d, FOREIGN KEY (id) REFERENCES XY(id))

= Alt 2: relations only for subclass entity sets
XYAB (id, x, y,a, b))
XYCD (id, x,y, ¢, d)

= Alt 3: one big relation
XYABCD (id, x,y,a,bc, d)

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR

UNIVERSITY
Views
= |ike a table, but stores query rather than data
= Definition: CREATE VIEW YoungActiveStudents (name, grade)

AS SELECT S.name, E.grade
FROM Students S, Enrolled E
WHERE S.sid = E.sid and S.age < 21

Use like any table: SELECT name
FROM YoungActiveStudents
WHERE grade < 3.00

Security: hiding details of underlying relation(s)

 Given YoungActiveStudents, but not Students or Enrolled, can find students enrolled

 ...but not courses they are enrolled in

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Relational Model: Summary

Tabular representation of data
 Simple & intuitive, most widely used

Rules ER — relational model

« Sometimes direct mapping: attributes, keys & foreign keys, ...
» Sometimes no direct support: inheritance, multiplicities, ...

Integrity constraints based on application semantics; DBMS enforces

primary + foreign keys; domain constraints; ...
Sometimes inherent from modelling approach, ex: multiplicities

SQL query language for generic set-oriented table handling (see next)

Databases & Web Services — © P. Baumann

