

Database Design

Databases & Web Services – © P. Baumann

.

Core Database Design Steps

Conceptual design

 \leftarrow Our focus in this Chapter

C>ONSTRUCTOR

UNIVERSITY

- Construct a description of the information used in an enterprise
- Focus on documenting customer intention, disregard technology
- Logical design
 - Construct a description based on a specific data model (e.g., relational)
 - Focus on abstract tech, disregard implementation
- Physical design
 - Describe implementation using a particular DBMS, file structures, indexes, security, ...

C>ONSTRUCTOR UNIVERSITY

Issues in Conceptual Design

- Conceptual design: (we use ER Model at this stage)
 - What are the entities and relationships in the enterprise?
 - What information about these entities and relationships should we store in the database?
 - What are the integrity constraints or business rules that hold?
- database `schema' in the ER Model represented pictorially = ER diagrams
 - Can map an ER diagram into a relational schema
 - Actually lack of textual equivalent is shortcoming
 - ... also: no formal semantics (originally)

5

Entity-Relationship Model: Basics

• Entity: Real-world object distinguishable from other objects

123-456-XY

- entity described (in DB) using a set of attributes
- Simple attribute values (strings, numbers)
- Entity set: collection of similar entities
 - E.g., all employees
 - All entities in an entity set have the same set of attributes
 - Until we consider ISA hierarchies, anyway!
 - Each entity set has a <u>key</u>
 - Each attribute has a domain = data type

('John Doe')

[John Doe]

ER Model Basics (Contd.)

- Relationship: (unique!) association among two or more entities
 - E.g., Attishoo works_in Pharmacy department
- Relationship Set: Collection of similar relationships
 - An n-ary (binary, ternary, ...) relationship set R relates n entity sets E1 ... En
 - each relationship in R involves entities $e1 \in E1$, ..., $en \in En$
 - Same entity set can participate in different relationship sets, or even in the same set (but then in different roles)

C>ONSTRUCTOR

UNIVERSITY

Constraints

- Used to capture more application semantics
- ...on relationship sets:
 - Key constraints (multiplicities)
- ...on entity sets:
 - Participation constraints

C>ONSTRUCTOR UNIVERSITY

Key Constraints: Multiplicity (contd)

- Multiplicity classification:
 - One-to-one "1:1"

- One-to-many
- "1:n"

Many-to-many

More Detail Wanted!

- Want to refine further: *how many connections on each leg of relship?*
- Attach intervals to leg:

- Read as:
 - "an Employee sees, through its Manages tunnel, none or one Department"
 - "a Department sees, through its Works_In tunnel, at least one Employee"

Notation Variants: Multiplicity

C>ONSTRUCTOR

UNIVERSITY

Databases & Web Services – © P. Baumann

Citing a Similar Discussion by Bernhard Reus (U of Sussex)

forget this slide!

Each branch is managed by (exactly) one member of staff. A member of staff can manage (at least) zero or (at most) one branch.

Participation Constraints

- Does every department have a manager?
- Entity set E is total wrt. relationship set R
 :<>> all E entities participate in R
- Entity set E is partial wrt. relationship set R
 :\epsilon some E entities do not participate in R

C>ONSTRUCTOR

UNIVERSITY

Relationships Example

Weak Entities

- forget this slide! weak entity: identified uniquely only by considering the primary key of another (owner) entity
- Owner entity set and weak entity set must participate in a one-to-many relationship set (one owner, many weak entities)
- Weak entity set must have total participation in identifying relationship set (no identification of its own!)

ISA (`is a') Hierarchies

- A ISA B: every A entity is also a B entity ("A inherits from B")
 - A entities have attributes like B entities have, plus maybe more
 - A is called subclass, B superclass
- Purpose:
 - add attributes specific to a subclass
 - identify specific entitities that participate in a relationship
- Constraints:
 - Overlap constraints: Can Joe be an Hourly_Emps as well as a Contract_Emps entity? (Allowed/disallowed)
 - Covering constraints: Does every Employees entity also have to be an Hourly_Emps or a Contract_Emps entity? (Yes/no)

Databases & Web Services – © P. Baumann

lot

name

Employees

ssn

Aggregation

- Aggregation = relationship involving (entitity sets and) a relationship set
- Aggregation allows us to treat a relationship set as an entity set for purposes of participation in (other) relationships

- Aggregation vs. ternary relationship:
 - Monitors is a distinct relationship, with a descriptive attribute
 - each sponsorship is monitored by at most one employee

Conceptual Design Using the ER Model

- Design choices:
 - concept modeled as entity or attribute?
 - concept modeled as entity or relationship?
 - Identifying relationships: Binary or ternary? Aggregation?
- Constraints in the ER Model:
 - A lot of data semantics can (and should) be captured
 - But some constraints cannot be captured in ER diagrams *comment your design!*
- Let's see...

Summary of ER

- ER model popular for conceptual design
 - simple & expressive
 - close to the way people think about their applications
- Basic constructs: entities and relationships, both with attributes
- Some additional constructs: weak entities, ISA hierarchies, and aggregation
- Note: There are many variations on ER model

C>ONSTRUCTOR UNIVERSITY

Summary of ER (Contd.)

- Several kinds of integrity constraints can be expressed in the ER model
 - key constraints
 - participation constraints
 - overlap/covering constraints for ISA hierarchies
- Some foreign key constraints implicit in definition of a relationship set
 - Some (actually: many) constraints cannot be expressed in the ER model
 - notably, functional dependencies
 - But: constraints play an important role in determining the best database design

Summary of ER (Contd.)

- ER design is subjective
 - often many ways to model a given scenario
 - When in doubt (and not only then), ask customer how they will query their data this usually gives valuable insights
 - Analyzing alternatives can be tricky, esp. large schemas (SAP R/3: 15,000 tables!)
- Common choices include:
 - Entity vs. attribute, entity vs. relationship, binary or n-ary relationship
 - whether or not to use ISA hierarchies, whether or not to use aggregation
- Ensuring good database design: resulting relational schema should be analyzed and refined further → logical design phase
 - Functional dependency information, normalization techniques

Databases & Web Services – © P. Baumann

UML™

[not in DBMS book, see course website]

- UML = Unified Modeling Language [www.uml.org]
 - Issued by OMG [Object Management Group, www.omg.org]
- "UML is a graphical language for visualizing, specifying, constructing, and documenting the artifacts of a software-intensive system."
 - does not prescribe particular methodology or process
- Notation & semantics for domains:
 - Use Case Model; Communication Model; Dynamic Model; Class Model; Physical Component Model; Physical Deployment Model
- Much more comprehensive than ER!
 - For our purpose: overkill

Classes

- Class Model at the core of object-oriented development and design
- Naming: instance (ER: entity) belongs to class (ER: entity set)

C>ONSTRUCTOR UNIVERSITY

Relationships & Class Diagrams

Relationship types:

- association ("must know about the other")
- aggregation / composition (class belongs to a collection)
- generalization (one class is a superclass of the other)
- Customer Order Navigability arrows 0..* date name address status association calcTax Multiplicity calcTotal Payment abstract class calcTotalWeight amount 1.0 Role names (optional) role name generalization multiplicity line item | 1..* 🔫 OrderDetail ltem class name Credit Cash Check quantity shippingWeight attributes 0..* taxStatus description number cashTendered name type. bankID calcSubTotal getPriceForQuantity expDate operations calcWeight getWeight authorized authorized navigability

Components and Deployment Diagrams

- Component = code module
- Deployment diagram = physical configuration of software and hardware

Excursion: UML Physical DB Modelling

- Some relational constructs that can be expressed:
 - primary key constraint (PK), foreign key constraint (FK), index constraint (Index), trigger (Trigger), uniqueness constraint (Unique), stored procedure (Proc), validity check (Check)

A Node is a physical piece of hardware (such as a Unix server) on which components are deployed. The database component in this example is also mapped to two logical «schema», each of which contains a number of tables.

