
1Advanced Databases – © P. Baumann

MapReduce

2Advanced Databases – © P. Baumann

Overview

 MapReduce: the concept

 Hadoop: the implementation

 Query Languages for Hadoop

 Spark: the improvement

 MapReduce vs databases

 Conclusion

3Advanced Databases – © P. Baumann

Map Reduce Patent

 Google granted US Patent 7,650,331, January 2010

 System and method for efficient large-scale data processing

A large-scale data processing system and method includes one or more

application-independent map modules configured to read input data and to

apply at least one application-specific map operation to the input data to

produce intermediate data values, wherein the map operation is

automatically parallelized across multiple processors in the parallel

processing environment. A plurality of intermediate data structures are

used to store the intermediate data values. One or more application-

independent reduce modules are configured to retrieve the intermediate

data values and to apply at least one application-specific reduce operation

to the intermediate data values to provide output data.

4Advanced Databases – © P. Baumann

MapReduce: the concept

Credits:

- David Maier

- Google

- Shiva Teja Reddi Gopidi

5Advanced Databases – © P. Baumann

Programming Model

 Goals: large data sets, processing distributed over 1,000s of nodes

• Abstraction to express simple computations

• Hide details of parallelization, data distribution, fault tolerance, load balancing

- MapReduce engine performs all housekeeping

 Inspired by primitives from functional PLs like Lisp, Scheme, Haskell

 Input, output are sets of key/value pairs

 Users implement interface of two functions:

map (inKey, inValue) -> (outKey, intermediateValuelist)

reduce(outKey, intermediateValuelist) -> outValuelist

aka „group by“ in SQL

aka aggregation in SQL

6Advanced Databases – © P. Baumann

Map/Reduce Interaction

 Map functions create a user-defined “index” from source data

 Reduce functions compute grouped aggregates based on index

 Flexible framework

• users can cast raw original data in any model that they need

• wide range of tasks can be expressed in this simple framework

7Advanced Databases – © P. Baumann

Ex 1: Count Word Occurrences

map(String inKey, String inValue):

// inKey: document name

// inValue: document contents

for each word w in inValue:

EmitIntermediate(w, "1");

reduce(String outputKey, Iterator auxValues):

// outKey: a word

// outValues: a list of counts

int result = 0;

for each v in auxValues:

result += ParseInt(v);

Emit(AsString(result));

[image: Google]

8Advanced Databases – © P. Baumann

Ex 2: Search

 Count of URL Access Frequency

• logs of web page requests  map()  <URL,1>

• all values for same URL  reduce()  <URL, total count>

 Inverted Index

• Document  map()  sequence of <word, document ID> pairs

• all pairs for a given word  reduce() sorts document IDs  <word, list(document ID)>

• set of all output pairs = simple inverted index

• easy to extend for word positions

9Advanced Databases – © P. Baumann

Hadoop: a MapReduce implementation
Credits:

- David Maier, U Wash

- Costin Raiciu

- “The Google File System” by S. Ghemawat, H. Gobioff, and S.-T. Leung, 2003

- https://hadoop.apache.org/docs/r1.0.4/hdfs_design.html

https://hadoop.apache.org/docs/r1.0.4/hdfs_design.html
https://hadoop.apache.org/docs/r1.0.4/hdfs_design.html
https://hadoop.apache.org/docs/r1.0.4/hdfs_design.html
https://hadoop.apache.org/docs/r1.0.4/hdfs_design.html
https://hadoop.apache.org/docs/r1.0.4/hdfs_design.html
https://hadoop.apache.org/docs/r1.0.4/hdfs_design.html
https://hadoop.apache.org/docs/r1.0.4/hdfs_design.html
https://hadoop.apache.org/docs/r1.0.4/hdfs_design.html

10Advanced Databases – © P. Baumann

Hadoop Distributed File System

 HDFS = scalable, fault-tolerant file system

• modeled after Google File System (GFS)

• 64 MB blocks („chunks“)

[“The Google File System” by S. Ghemawat, H. Gobioff, and S.-T. Leung, 2003]

H
ad

oo
p

11Advanced Databases – © P. Baumann

GFS

 Goals:

• Many inexpensive commodity components – failures happen routinely

• Optimized for small # of large files (ex: a few million of 100+ MB files)

 relies on local storage on each node

• parallel file systems: typically dedicated I/O servers (ex: IBM GPFS)

 metadata (file-chunk mapping, replica locations, ...) in master node„s RAM

• Operation log on master„s local disk, replicated to remotes  master crash recovery!

• „Shadow masters“ for read-only access

HDFS differences?
• No random write; append only

• Implemented in Java, emphasizes platform independence

• terminology: namenode  master, block  chunk, ...

12Advanced Databases – © P. Baumann

Hadoop

 Apache Hadoop = open source MapReduce implementation

• significant impact in the commercial sector

 two core components:

• job management framework to handle map & reduce tasks

• Hadoop Distributed File System (HDFS)

13Advanced Databases – © P. Baumann

Hadoop Job Management Framework

 JobTracker = daemon service for submitting & tracking MapReduce jobs

 TaskTracker = slave node daemon in the cluster accepting tasks

(Map, Reduce, & Shuffle operations) from a JobTracker

 Pro: replication & automated restart of failed tasks

 highly reliable & available

 Con: 1 Job Tracker per Hadoop cluster, 1 Task Tracker per slave node

 single point of failure

14Advanced Databases – © P. Baumann

Replica Placement

 Goals of placement policy

• scalability, reliability and availability, maximize network bandwidth utilization

 Background: GFS clusters are highly distributed

• 100s of chunkservers across many racks

• accessed from 100s of clients from same or different racks

• traffic between machines on different racks may cross many switches

• bandwidth between racks typically lower than within rack

15Advanced Databases – © P. Baumann

MapReduce Pros/Cons

 Pros:

 Simple and easy to use

 Fault tolerance

 Flexible

 Independent from storage

 Cons:

 no high level language

 No schema, no index

 single fixed dataflow

 Low efficiency

16Advanced Databases – © P. Baumann

“top 5 visited pages by users aged 18-25”

In MapReduce

[http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt]

17Advanced Databases – © P. Baumann

Query Languages for MapReduce

Credits:

- Matei Zaharia

18Advanced Databases – © P. Baumann

Adding Query Interfaces to Hadoop

 Pig Latin

• Data model: nested “bags” of items

• Ops: relational (JOIN, GROUP BY, etc) + Java custom code

 Hive

• Data model: RDBMS tables

• Ops: SQL-like query language

19Advanced Databases – © P. Baumann

Example Problem

 user data in one file

 website data in another

 find top 5 most visited pages

 by users aged 18-25

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

[http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt]

20Advanced Databases – © P. Baumann

In SQL

SELECT INTO Temp

UV.sourceIP,

AVG(R.pageRank) AS avgPageRank,

SUM(UV.adRevenue) AS totalRevenue

FROM Rankings AS R, UserVisits AS UV

WHERE R.pageURL = UV.destURL

AND UV.visitDate BETWEEN

DATE(‘2000-01-15’) AND

DATE(‘2000-01-22’)

GROUP BY UV.sourceIP

SELECT sourceIP,

avgPageRank,

totalRevenue

FROM Temp

ORDER BY totalRevenue

DESC LIMIT 1

21Advanced Databases – © P. Baumann

Users = load ‘users’ as (name, age);
Filtered = filter Users by

age >= 18 and age <= 25;
Pages = load ‘pages’ as (user, url);
Joined = join Filtered by name, Pages by user;
Grouped = group Joined by url;
Summed = foreach Grouped generate group,

count(Joined) as clicks;
Sorted = order Summed by clicks desc;
Top5 = limit Sorted 5;

store Top5 into ‘top5sites’;

Pig Latin

22Advanced Databases – © P. Baumann

Translation to MapReduce

Quite natural translation of job components into Pig Latin:

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Users = load …
Filtered = filter …
Pages = load …
Joined = join …
Grouped = group …
Summed = … count()…
Sorted = order …
Top5 = limit …

23Advanced Databases – © P. Baumann

Job 1

Job 2

Job 3

Translation to MapReduce

Quite natural translation of job components into Pig Latin:

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Users = load …
Filtered = filter …
Pages = load …
Joined = join …
Grouped = group …
Summed = … count()…
Sorted = order …
Top5 = limit …

24Advanced Databases – © P. Baumann

Hive

 Relational database built on Hadoop

• table schemas, SQL-like query language

• can call Hadoop Streaming scripts

 Common relational features:

• table partitioning,complex data types, sampling

• some query optimization

 Developed at Facebook, now Apache

• Today: „data warehouse infrastructure“

SELECT word, count(1) AS count

FROM (SELECT explode(split(line, '\s')) AS word

FROM docs) temp

GROUP BY word

ORDER BY word

25Advanced Databases – © P. Baumann

MapReduce vs (Relational) Databases

Credits: David Maier

26Advanced Databases – © P. Baumann

SQL in MapReduce?

 Projection, filtering: easy

 Join, grouping, sorting?

27Advanced Databases – © P. Baumann

Grep Task: Load Times

[“A Comparison of Approaches to Large-Scale Data Analysis” by A. Pavlo et al., 2004]

28Advanced Databases – © P. Baumann

Grep Task: Execution Times

[“A Comparison of Approaches to Large-Scale Data Analysis” by A. Pavlo et al., 2004]

29Advanced Databases – © P. Baumann

Tasks Comparison: Starting Point

 Data set

• 600K unique HTML documents

• 155M user visit records (20 GB/node)

• 18M ranking records (1 GB/node)

CREATE TABLE Documents (

url VARCHAR(100)

PRIMARY KEY,

contents TEXT);

CREATE TABLE UserVisits (

sourceIP VARCHAR(16),

destURL VARCHAR(100),

visitDate DATE,

adRevenue FLOAT,

userAgent VARCHAR(64),

countryCode VARCHAR(3),

languageCode

VARCHAR(3),

searchWord VARCHAR(32),

duration INT);

CREATE TABLE Rankings (

pageURL VARCHAR(100)

PRIMARY KEY,

pageRank INT,

avgDuration INT);

[“A Comparison of Approaches to Large-Scale Data Analysis” by A. Pavlo et al., 2004]

30Advanced Databases – © P. Baumann

Select Task

 SQL Query:

 Relational DBMS

• use index on pageRank column

• Relative performance degrades

as number of nodes increases

 Hadoop start-up cost increase

with cluster size

SELECT pageURL, pageRank

FROM Rankings

WHERE pageRank > X

[“A Comparison of Approaches to Large-Scale Data Analysis” by A. Pavlo et al., 2004]

31Advanced Databases – © P. Baumann

Aggregation Task

“total ad revenue for each source IP, based on user visits table”

SELECT sourceIP,

SUM(adRevenue)

FROM UserVisits

GROUP BY sourceIP

SELECT SUBSTR(sourceIP, 1, 7),

SUM(adRevenue)

FROM UserVisits

GROUP BY SUBSTR(sourceIP, 1, 7)

[“A Comparison of Approaches to Large-Scale Data Analysis” by A. Pavlo et al., 2004]

Variant 1: 2.5M groups Variant 2: 2,000 groups

32Advanced Databases – © P. Baumann

Join Task

SQL Query:

[“A Comparison of Approaches to Large-Scale Data Analysis” by A. Pavlo et al., 2004]

SELECT INTO Temp

UV.sourceIP,

AVG(R.pageRank) AS avgPageRank,

SUM(UV.adRevenue) AS totalRevenue

FROM Rankings AS R, UserVisits AS UV

WHERE R.pageURL = UV.destURL

AND UV.visitDate BETWEEN

DATE(‘2000-01-15’) AND

DATE(‘2000-01-22’)

GROUP BY UV.sourceIP

SELECT sourceIP,

avgPageRank,

totalRevenue

FROM Temp

ORDER BY totalRevenue

DESC LIMIT 1

33Advanced Databases – © P. Baumann

MapReduce vs (Relational) Databases: Join

SQL Query: MapReduce program:

• filter records outside date range, join with

rankings file

• compute total ad revenue and average

page rank based on source IP

• produce largest total ad revenue record

 Phases in strict sequential order

[A. Pavlo et al., 2004: A Comparison of Approaches to Large-Scale Data Analysis]

SELECT INTO Temp

UV.sourceIP,

AVG(R.pageRank) AS avgPageRank,

SUM(UV.adRevenue) AS totalRevenue

FROM Rankings AS R, UserVisits AS UV

WHERE R.pageURL = UV.destURL

AND UV.visitDate BETWEEN

DATE(‘2000-01-15’) AND

DATE(‘2000-01-22’)

GROUP BY UV.sourceIP

SELECT sourceIP,

avgPageRank,

totalRevenue

FROM Temp

ORDER BY totalRevenue

DESC LIMIT 1

34Advanced Databases – © P. Baumann

Summary: MapReduce vs Parallel (R)DBMS

 MapReduce: No schema, no index, no high-level language

• faster loading vs. faster execution

• easier prototyping vs. easier maintenance

 Fault tolerance

• restart of single worker vs. restart of transaction

 Installation & tool support

• easy for MapReduce vs. challenging for parallel DBMS

• No tools for MapReduce vs. lots of tools, including automatic performance tuning

 Performance per node

• parallel DBMS ~same performance as map/reduce

in smaller clusters

In a nutshell:

- (R)DBMSs: efficiency, QoS

- MapReduce: cluster scalability

35Advanced Databases – © P. Baumann

Spark

Credits:

- Matei Zaharia

36Advanced Databases – © P. Baumann

Motivation

 MapReduce aiming at “big data” analysis on large, unreliable clusters

• After initial hype, shortcomings perceived:

ease of use (programming!), efficiency, tool integration, ...

 …as soon as organizations started using it widely, users wanted more:

• More complex, multi-stage applications

• More interactive queries

• More low-latency online processing

S
ta

ge
 1

S
ta

ge
 2

S
ta

ge
 3

Iterative job

Query 1

Query 2

Query 3

Interactive mining

Jo
b

1

Jo
b

2

…

Stream processing

37Advanced Databases – © P. Baumann

Avoiding Disks

 Problem: in MR, only way to communicate data is disk  slow!

 Goal: In-Memory Data Sharing

• 10-100× faster than network and disk

iter. 1 iter. 2 . . .

Input

HDFS

read

HDFS

write

HDFS

read

HDFS

write

iter. 1 iter. 2 . . .

Input

38Advanced Databases – © P. Baumann

Resilient Distributed Datasets (RDDs)

 Partitioned collections of records

that can be stored in memory across the cluster

 Manipulated through a diverse set of transformations

• map, filter, join, etc

 Fault recovery without costly replication

• Remember series of transformations that built RDD (its lineage)

• Can recompute lost data based on input files

39Advanced Databases – © P. Baumann

Example: Log Mining

 Load error messages from a log into memory, then interactively search for

various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(„\t‟)(2))

messages.cache()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

messages.filter(_.contains(“foo”)).count

messages.filter(_.contains(“bar”)).count

. . .

tasks

results

Cache 1

Cache 2

Cache 3

Base RDDTransformed RDD

1 TB data in 5-7 sec (vs 170 sec on disk)

Scala programming language

40Advanced Databases – © P. Baumann

Spark vs Hadoop

 Spark = cluster-computing framework by Berkeley AMPLab

• Now Apache

 Inherits HDFS, MapReduce from Hadoop

 But:

• Disk-based comm in-memory comm

• Java Scala

41Advanced Databases – © P. Baumann

Hadoop vs Spark: Logistic Regression

 “Find best line separating two sets of points”

 29 GB dataset

 20x EC2 m1.xlarge 4-core machines

 Result:

0

1000

2000

3000

4000

5000

1 5 10 20 30

R
u

n
n

in
g

 T
im

e
 (
s)

#Iterations

Hadoop

Spark

127 s / iteration

first iteration 174 s

further iterations 6 s

target

random initial line

42Advanced Databases – © P. Baumann

Conclusion

43Advanced Databases – © P. Baumann

Conclusion

 MapReduce = specialized distributed processing paradigm

• Optimized for horizontal scaling in commodity clusters (!), fault tolerance

• Well suited for set-oriented tasks, less so for highly connected data (graphs, arrays, ...)

• Need to rewrite algorithms

 Apache Hadoop = MapReduce implementation

• HDFS, Java

 Apache Spark = improved MapReduce implementation

• HDFS, RDD for in-memory, Scala

 Query languages on top of MapReduce

• HL QLs: Pig, Hive, JAQL, ASSET, …

