C>ONSTRUCTOR
UNIVERSITY

Query Processing:
Evaluation of Relational Operations

Jennifer Widom




C>ONSTRUCTOR
UNIVERSITY

Steps in Database Query Processing

Parser — Checker - Views - Logical plan - Optim1 - Physical plan - Optim2 - Execution

relational _ .

parser & | | algebra ! optimizer execution evalughon query

translator | | expression \ plan engine output
\/ N

T
~_
data
~
£ PN
,logical plan® ,physical plan®

Advanced Databases — © P. Baumann



C>ONSTRUCTOR
UNIVERSITY

Running Example

= Tables (what are the keys?):

Student(ID, Name, Major)
Course(Num, Dept)
Taking(ID, Num)

= Query to find all EE students taking at least one CS course:

SELECT Name T
FROM  Student, Course, Taking X
WHERE Taking.ID = Student.ID c

AND Taking.Num = Course.Num

... plus subgueries, aggregates,
AND Major ='EE'

NULL, duplicates, ...

AND Dept ='CS'

Advanced Databases — © P. Baumann



C>ONSTRUCTOR
UNIVERSITY

Checker (Validation)

Parser — Checker - Views - Logical plan - Rewriter - Physical plan - Code gen. - Execution
= Verifies query tree against database schema

o Alltables in FROM clause exist

» All columns of tables exist

 No ambiguities in table references or unqualified attribute references (table names
usually added at this point)

« All comparisons, aggregations, etc. are type-compatible

= Where does info come from?

» System catalog

Advanced Databases — © P. Baumann



C>ONSTRUCTOR
UNIVERSITY

View Expander

Parser — Checker - Views - Logical plan — Optim1 - Physical plan — Optim2 - Execution

u SUppOSG Student is view: i_ét_u_d;eat_(l_ID_,_l\l_a_rr_le_,_l\ia_jgr_)jl
CREATE VIEW Student AS . |
SELECT StudName.ID, Name, Major —

FROM StudName, StudMajor StudName(ID, Name)| | StudMajor(ID, Major)

WHERE StudName.ID = StudMajor.ID

= Via view expander original query becomes:

SELECT Name ‘
o= S0 L ALE hene el i
FROM Course, Taking, Student AS ( SELECT StudName.ID, Name, Major AD Noormgp et
FROM StudName, StudMajor WHERE StudName.ID = StudMajor.ID ) AND Dept='CS

WHERE Taking.ID = Student.ID AND Taking.Num = Course.Num AND
Student.Major = 'EE' AND Course.Dept ='CS* AND StudName.ID = StudMajor.ID

= "flattened": SELECT Name
FROM Course, Taking, StudName, StudMajor
WHERE Taking.ID = StudName.ID AND Taking.Num = Course.Num AND
StudMajor.Major = 'EE' AND Course.Dept = 'CS' AND StudName.ID = StudMajor.ID

Advanced Databases — © P. Baumann



C>ONSTRUCTOR
UNIVERSITY

Logical Plan

Parser — Checker - Views - Logical plan - Rewriter - Physical plan - Code gen. - Execution

Extended relational algebra

* Problem: SQL more than relational algebra — additional complexity

Leaf of logical plan = data source = table name

Inner nodes:

 Basic operators: SELECT, PROJECT, CROSS-PRODUCT, UNION, DIFFERENCE
 Abbreviations: NATURAL-JOIN, THETA-JOIN, INTERSECT
 Extensions: RENAME, AGGREGATE/GROUP-BY, DISTINCT (+ others)

Usually straightforward mapping
parse tree — "naive" logical query plan

 Optimizer may rewrite to "better" plan

Advanced Databases — © P. Baumann



C>ONSTRUCTOR
UNIVERSITY

Logical Query Tree: Notation Overview

Parser — Checker - Views - Logical plan - Rewriter - Physical plan - Code gen. - Execution

= Logical query tree

(04 <
= Logical plan = parsed query, 3
translated into relational algebra
T op_1 nua op_n
= Equivalent to relational algebra t
expression (why not calculus?)
9) <
using: f
e x Cross product
. % cond
* o selection from set,
based on condition cond
e 7 projection to attributes R1 L Rn

» o application of an expression

to arguments SELECT a(op_1(R1,R2,...)),0p_2(R1,R2,...), ...)

a FROM R1,R2, ...
>< joins... WHERE o(R1,R2,...)

Advanced Databases — © P. Baumann



C>ONSTRUCTOR
UNIVERSITY

Logical Query Tree: Example

Parser — Checker - Views - Logical plan - Rewriter - Physical plan - Code gen. - Execution

—| Student.Name

Course.Dept = 'CS'

Taking.ID = Student.ID
A Taking.Num = Course.Num
A Major ='EE" A Dept ='CS'

Student.Major = 'EE'

Student || Course || Taking Taking.Num = Course.Num

SELECT Name
FROM  Student, Course, Taking
WHERE Taking.ID = Student.ID

AND  Taking.Num = Course.Num 'ﬁ
AND  Major = 'EE! afng

AND Dept="CS Student || Course

Taking.ID = Student.ID

Advanced Databases — © P. Baumann



C>ONSTRUCTOR
UNIVERSITY

Query Optimization

Parser — Checker - Views - Logical plan — Optim1 - Physical plan — Optim2 - Execution

= Optimization = find better, equivalent plan

« Equivalent = produces same result
 Logical level optimization = aka heuristic optimization
» Physical level optimization = aka cost-based optimization

= Two main issues:

 Fora given query, how to find cheapest plans?
* How is cost of a plan estimated?

Advanced Databases — © P. Baumann



C>ONSTRUCTOR
UNIVERSITY

Logical (,,Heuristic®) Optimization
Parser — Checker - Views - Logical plan — Optim1 - Physical plan — Optim2 - Execution
= |ogical tree — (more efficient) logical tree

* heuristically apply algebraic equivalences
* heuristics = "looks good, let's try it!"

= EX: “push down predicates”
c5major='EE‘(DqTaking.ID=Student.|D(-|-aking’SJ[Udent))

D> <t aing.D=student. p( TaKING, O o= (Student))

G Student.Major = 'EE' ><{ Taking.ID = Student.ID

A

A

><] Taking.ID = Student.ID

A

jl G Student.Major = 'EE'

Student | | Taking Student Taking

Advanced Databases — © P. Baumann



C>ONSTRUCTOR
UNIVERSITY

Heuristic Optimization: Another Example [src]

SELECT DISTINCT x.name, Z.name

FROM Product x, Purchase y, Customer z

WHERE x.pid = y.pid AND y.cid = z.cid AND
X.price > 100 AND z.city = 'Seattle’

(- G
O DISTINCT O DISTINCT
n X.name, y.name ﬂ X.name, y.name

| l

G x.price > 100 AND M y.cid = z.cid

{ z.city = 'Seattle’ / \

D<A y.cid = z.cid x.pid = y.pid P<| a z.city = 'Seattle’
D / . N
Pl x.pid = y.pid Customer <inrios > 100 G Purchase Customer
e N /
Product Purchase Product Why bette r?

Advanced Databases — © P. Baumann


http://mlwiki.org/index.php/Logical_Query_Plan_Optimization

C>ONSTRUCTOR
UNIVERSITY

Physical Query Plan
Parser — Checker - Views - Logical plan - Rewriter - Physical plan - Code gen. - Execution
= Typically, several algorithm variants for implementing query node = operator

= Physical plan created by concretizing particular algorithm per node

« Based on indexes, table sizing, predicate selectivity, ...

= EX. SELECT Student.Name PROJECT( Name )
FROM  Student, Course, Taking 1

WHERE Taklnng = Student.|D INDEX-NESTED-LOOP-JOIN( Num )
AND  Taking.Num = Course.Num /\
AND Major ='EE'

AND Dept="'CS' INDEX-NESTED-LOOP-JOIN( ID) INDEX-SCAN( Course.Num)

/\

FILTER( major=EE') | | INDEX-SCAN ( Taking.ID )

A

SCAN( Student) one of many possible plans, assumes
particular index situation!

Advanced Databases — © P. Baumann



C>ONSTRUCTOR
UNIVERSITY

Sample Physical Plan, Textual

Parser — Checker - Views - Logical plan - Rewriter - Physical plan - Code gen. - Execution
SET EXPLAIN ON AVOID_EXECUTE: IBM Informix Dynamic Server
SELECT C.customer_num, O.order_num
FROM  customer C, orders O, items |
WHERE C.customer_num = O.customer_num
AND O.order_num = l.order_num

for each row in the customer table do:
read the row into C
for each row in the orders table do:
read the row into O
if O.customer_num = C.customer_num then
for each row in the items table do:
read the row into |
if |.order_num = O.order_num then
accept the row and send to user
end if
end for
end if
end for

In PostgreSQL: end for
EXPLAIN ANALYZE

Advanced Databases — © P. Baumann



C>ONSTRUCTOR
UNIVERSITY

Physical Plan Operators

Parser — Checker - Views - Logical plan - Rewriter - Physical plan - Code gen. - Execution

Usually: physical plan leaf = table, index
Access methods for single tables:

 Table scan: SCAN( table )
 Index scan: INDEX-SCAN( index )

 Condition-based index scan: INDEX-SCAN-P (index, predicate )
(note: obviously the predicate must be compatible with the index to be scanned)

Join methods:

» NESTED-LOOP JOIN (various algorithms / improvements);
* SORT-MERGE JOIN
» HASH JOIN (various algorithms)

In a parallel system: EXCHANGE
* |nadistributed system:  SHIP

Advanced Databases — © P. Baumann



C>ONSTRUCTOR
UNIVERSITY

Physical Plan Generation

Parser — Checker - Views - Logical plan - Rewriter - Physical plan - Code gen. - Execution

= Even more possible physical query plans for a given logical plan

= physical plan generator tries to select "optimal” one
« sometimes called "physical plan enumerator”
« usually wrt response time or (in some cases) throughput
= How are intermediate results passed from children to parents?

o Temporary files
* lterator interface (next)

Advanced Databases — © P. Baumann



C>ONSTRUCTOR
UNIVERSITY

lterator Interface

Parser — Checker - Views - Logical plan - Rewriter - Physical plan - Code gen. - Execution

= Every operator maintains its own execution state,
implements the following methods:

« open():
Initialize state

 getNext():
Return next tuple (or null pointer); read more data when needed

* close():
Clean up

= "ONC protocol”

Advanced Databases — © P. Baumann



C>ONSTRUCTOR
UNIVERSITY

lterator for Table Scan

Parser — Checker - Views - Logical plan - Rewriter - Physical plan - Code gen. - Execution
= open()

« Allocate buffer space

= getNext( )

* |f no block of R has been read yet: read first block from the disk;
return first tuple in the block (or null pointer if R is empty)

* |f no more tuple left in current block: read next block of R from disk;
return first tuple in block (or null pointer if no more blocks in R)

 Return next tuple in block

= close()

 Deallocate buffer space

Advanced Databases — © P. Baumann



C>ONSTRUCTOR
UNIVERSITY

lterator for Nested-Loop Join

Parser — Checker - Views - Logical plan - Rewriter - Physical plan - Code gen. - Execution

= open()
» R.open(); S.open();
* r=R.getNext();

= getNext()

* Repeat until r and s join: forrin R:
s = S.getNext( ); Q.
(5 = = null o &
{ S.close(); S.open(); s = S.getNext( ); If joINS S
if (s == null) return null;
= R getNext( ) then return rs

if (r == null) return null;
}

e returnrs;

= close()

* R.close(); S.close( );

Advanced Databases — © P. Baumann



C>ONSTRUCTOR
UNIVERSITY

Physical (,,Cost-Based”) Optimization

Parser — Checker - Views - Logical plan — Optim1 - Physical plan — Optim2 - Execution

= Approach:

 enumerate all (?) possible physical plans that can be derived from given logical plan
* estimate cost for each plan

* pick best (i.e., least cost) alternative

= |deally: Want to find best plan; practically: Avoid worst plans!

/ Any of these will do

| second 1 minute 1 hour

Advanced Databases — © P. Baumann



C>ONSTRUCTOR
UNIVERSITY

Physical (,,Cost-Based®) Optimization

Parser — Checker - Views - Logical plan — Optim1 - Physical plan — Optim2 - Execution

= Estimate costs, based on physical situation

« concrete table sizes, indexes, data distribution, ... PROJECP Name )
e Find Cheapest p|an INDEX-NESTED-LOOP-JOIN( Num )
/\
NESTED-LOOP-JOIN(ID ) | | INDEX-SCAN( Course.Num )
PROJECT( Name ) - —
f FILTER-SCAN( StudentEE ) | | SCAN ( Taking.ID )
INDEX-NESTED-LOOP-JOIN( Num )
T PROJECT( Name )
INDEX-NESTED-LOOP-JOIN(ID)) | | INDEX-SCAN( Course.Num ) ;
o INDEX-NESTED-LOOP-JOIN( Num)
FILTER( major=EE') | | INDEX-SCAN ( Taking.ID ) T
f FILTER( major='EE' ) | | INDEX-SCAN( Course.Num )
SCAN( Student ) 5
NESTED-LOOP-JOIN(ID )
/\
SCAN( Student ) SCAN ( Taking.ID )

Advanced Databases — © P. Baumann




C>ONSTRUCTOR
UNIVERSITY

Summary: Logical vs Physical Query Plan

Parser — Checker - Views - Logical plan - Rewriter - Physical plan - Code gen. - Execution

Both are trees representing query evaluation

Leaves of the tree represent data (table vs table/index)

Internal nodes of the tree = "operators” over the data

Logical vs physical plan:

Level Operators

Logical plan | higher-level, algebraic query language constructs

Physical plan | lower-level, operational "access methods"

Advanced Databases — © P. Baumann



C>ONSTRUCTOR
UNIVERSITY

Optional: Code Generator

Parser — Checker - Views - Logical plan - Rewriter - Physical plan - Code gen. - Execution

= Translates physical query plan tree into executable code
 Possibly mixed hardware: CPU, GPU, FPGA, ...

= QOften instead: compile into "database machine code" program

= Very system-specific

* may instead use a query plan interpreter (see next)

Advanced Databases — © P. Baumann



C>ONSTRUCTOR
UNIVERSITY

Finale: Execution of Tree

Parser — Checker - Views - Logical plan - Rewriter - Physical plan - Optim. - Execution

root
| INDEX-NESTED-LOOP-JOIN( Num ) |
| |NDWN( ID) | | INDEX-SCAN( Course.Num ) | R | f
| FILTER(mejor=EE') || INDEX-SCAN ( Taking.D) | = Recursive evaluation of tree
* Requests go down
result = {}; | " -
root.open (), ntermediate result tuples go up
do = Often instead: compile into
{ "database machine code" program
tmp = root.getNext();
} while (tmp != NULL);
root.close();

return result;

Advanced Databases — © P. Baumann



C>ONSTRUCTOR
UNIVERSITY

Summary

& relational m I
— execution evaluation query
que Rt algebra .
translator | | expression > optimizer plan engine output
\/ N

T
~_
data
~
72N 7N
Jlogical plan® ,physical plan®

Advanced Databases — © P. Baumann



