
1Advanced Databases – © P. Baumann

Web Service Protocols

2Advanced Databases – © P. Baumann

HTTP: GET, POST, & Friends

3Advanced Databases – © P. Baumann

GET Requests

 Recall: http offers

• GET, POST, PUT, DELETE

• …plus several more

 Request modification through key/value pairs

• ?

• &

 Client sends:

http://acme.com/srv ? mybasket=6570616275 & article=656e44204456

4Advanced Databases – © P. Baumann

Request Parameters: How Passed?

 GET parameters: URL text

• Can be cached, bookmarked

• Reload / back in history harmless

• Data visible in URL

 POST parameters: HTTP message body

• Not cached, bookmarked

• Reload / back in history re-submits

• Data not visible,

not in history,

not in server logs

GET srv?k1=v1&k2=v2 HTTP/1.1

POST srv HTTP/1.1

k1=v1&k2=v2

http://www.w3schools.com/tags/ref_httpmethods.asp

http://www.w3schools.com/tags/ref_httpmethods.asp
http://www.w3schools.com/tags/ref_httpmethods.asp
http://www.w3schools.com/tags/ref_httpmethods.asp

5Advanced Databases – © P. Baumann

REST

(Representational State Transfer)

6Advanced Databases – © P. Baumann

REST

 REST

= Representational State Transfer

• Resource + URI

• Web = one address space

• representation

• Client requests follow xlink

•  new state

 Not a standard nor product,
but „architectural style“

• = way to craft Web interface

 URI defines resource

being requested

• Consistent design philosophy

• easy to follow

 Relies on four basic

http operations:

• GET – Query

• POST – Update

• PUT – Add

• DELETE – Delete

[Thomas Roy Fielding, 2002]

7Advanced Databases – © P. Baumann

Sample RESTful Application

 Scenario: online shop

 Fetch information: "shopping basket with id 5873"

• Response:

• Client can follow links, that changes its state

• No side effect (status change) on server side

GET /shoppingBasket/5873

<shoppingBasket xmlns:xlink="http://www.w3.org/1999/xlink">

<customer xlink:href="http://shop.oio.de/customer/5873">5873</customer>

<position nr="1" amount="5">

<article xlink:href="http://shop.oio.de/article/4501" nr="4501">

<description>lollypop</description>

</article>

</position>

<position nr="2" amount="2">... </position>

</shoppingBasket>

8Advanced Databases – © P. Baumann

Sample RESTful Application (contd.)

 Place order:

"add article #961 to shopping basket #5873"

• Changes server state

POST /shoppingBasket/5873

articleNr=961

PUT /article

<article>

<description>Rooibush tea</description>

<price>2.80</price>

...

</article>

HTTP/1.1 201 OK

...

http://shop.oio.de/article/6005

DELETE /article/6005

 Add article

• Again, changes server state

• Returns new id

 Delete article

• Server state change

9Advanced Databases – © P. Baumann

Choice of Return Formats

 Propblem: how to indicate output format

• Ex: Old browsers understood GIF, JPEG for imagery

• GET/KVP:

 REST: use http Accept-Encoding parameter [IETF RFC 2616]

• More powerful than GET: negotiate alternatives, quality factor q [0..1]

• However, RESTafarians typically ignore this, use „...&f=...“ ...back to GET/KVP ;-)

 Examples: Accept-Encoding: compress, gzip

Accept-Encoding:

Accept-Encoding: *

Accept-Encoding: compress;q=0.5, gzip;q=1.0

Accept-Encoding: gzip;q=1.0, identity; q=0.5, *;q=0

http://.../service-endpoint?q=...&format=image/tiff

10Advanced Databases – © P. Baumann

Security

 Remember: SOAP, XML-RPC do http tunneling

• Major security leak:

cannot determine request payload unless body is inspected and understood (!)

 REST: typed requests, firewall can judge better security

hermes.oio.de - - [26/Nov/2002:12:43:07 +0100] "GET /shoppingBasket/6 HTTP/1.1" 200

hermes.oio.de - - [26/Nov/2002:12:43:08 +0100] "GET /article/12 HTTP/1.1" 200

hermes.oio.de - - [26/Nov/2002:12:43:08 +0100] "GET /article/5 HTTP/1.1" 200

hermes.oio.de - - [26/Nov/2002:12:43:09 +0100] "POST /shoppingBasket/6 HTTP/1.1" 200

hermes.oio.de - - [26/Nov/2002:12:43:13 +0100] "POST /shoppingBasket/6 HTTP/1.1" 200

hermes.oio.de - - [26/Nov/2002:12:43:14 +0100] "GET /Order/3 HTTP/1.1" 200

 admins much more inclined to open firewall for REST services

than for SOAP

11Advanced Databases – © P. Baumann

REST: How Powerful?

 Local path uses historical directory syntax  strict hierarchy

• Standard Web servers, proxies etc can cache

 What breaks hierarchies

• Multi-dimensional indexing – Lat/Long/height/time has no particular sequence

• SQL: joins – join tables come in no particular sequence

• SQL: complex predicates – .../filter1/filter2/filter3/... cannot express AND / OR / NOT

• SQL: nested queries

 Remedy: old-school KVP

• So much more powerful, but no caching etc.

http://.../service-endpoint/MyShop/ShoppingBaskets/14731/Article/67236

http://.../service-endpoint/MyShop?q=select-from-where

12Advanced Databases – © P. Baumann

REST: Appraisal

 Strengths

• Simple paradigm; Web = RESTful resource (SOAP: individual spec per service)

• Caching (SOAP: based on POST, not cached)

• Proven base stds: http, URI, MIME, XML (SOAP: WSDL, UDDI, WS-*, BPEL, ...)

• Oops: cookies break REST paradigm

 Weaknesses

• Assumes addressability by path + identifier (URI!) = single-root hierarchies
only fraction of SQL power

• Schema to represent all URIs is complex

• response data structure definition outside REST (how was that with SOAP?)

• limited support for HTTP PUT & DELETE in popular development platforms

• Power of http headers not accessible via browser URL

13Advanced Databases – © P. Baumann

Summary

 Web services: want function invocation on server

 Remote Procedure Call (RPC)

• Existing since 1980s: XDR

 Web World is evolving

• New paradigms emerging (and some disappearing)

• GET/KVP, POST/XML, SOAP, REST, JSON, OpenAPI, ...

 Service protocol independent from database query languages!

• Ex:

• GET/KVP:

• POST/XML:

http:/acme.com/access-point?q=select%20*%20from...

<query>select *from...</query>

14Advanced Databases – © P. Baumann

AJAX

(Asynchronous Javascript and XML)

15Advanced Databases – © P. Baumann

History

 Challenge: want more interactivity than "click link / reload complete page“

• HTML's iframes

 Microsoft IE5 XMLHttpRequest object

• Outlook Web Access, supplied with Exchange Server 2000

 2005: term "AJAX" coined by Jesse James Garnett

 made popular in 2005 by Google Suggest

• start typing into Google's search box list of suggestions

16Advanced Databases – © P. Baumann

AJAX

 AJAX = Asynchronous Javascript and XML

 web development technique for creating more interactive web applications

• Goal: increase interactivity, speed, functionality, usability

• not complete page reload small data loads  more responsive

 asynchronous: c/s communication independent from normal page loading

• JavaScript

• XML

• any server-side PL

17Advanced Databases – © P. Baumann

AJAX Constituent Technologies

 The core: JavaScript XMLHttpRequest object

• Sends data, waits for response via event handler

• Replaces <FORM> and HTTP GET / POST

 Client DOM manipulated to dynamically display & interact

• Inject response into any place(s) of DOM tree

• client-side scripting language: JavaScript, Jscript, ...

 Some data format

• XML, JSON, HTML, text, ...

 Some server agent

• Servlet, script, ...

18Advanced Databases – © P. Baumann

Ajax Example: Traditional Style

 Client:

<?

echo 'You have entered ' . $_GET['wordKey']

. ' and your IP is: ' . $_SERVER['REMOTE_ADDR'];

?>

<form method='GET' action='http://.../ajax-ex.php'>

word:

<input name='wordKey' type='text'>

<input type='submit' value='Go'>

</form>

You have entered Moribundus, and your IP is: 127.0.0.1

 Server:

 Client, after page reload:

19Advanced Databases – © P. Baumann

Step 1: Avoid Complete Page Reload

function callBack()

{ var SERVICE = 'http://.../ajax-ex.php';

var req = new XMLHttpRequest();

var val = document.forms['wordForm'].wordKey.value;

req.open('GET', SERVICE+'?wordKey='+val, true);

req.setRequestHeader('Content-Type',

'application/x-www-form-urlencoded');

req.send(null);

req.onreadystatechange = function()

{ if (req.readyState == 4)

document.forms['wordForm'].result.innerHtml =

req.responseText;

}

}

<form name='wordForm'>

word:

<input name='wordKey' type='text'>

<input type='button' value='Go' onClick='JavaScript:callBack()'>

<div id='result'></div>

</form>

word: _________________

You have entered Moribundus, and your IP is: 127.0.0.1

0 request not initialized

1 request set up

2 request sent

3 request in process

4 request complete

20Advanced Databases – © P. Baumann

Step 2: Avoid SUBMIT Button

 Before: just re-implemented submit; now: allow c/s activity at any time

• Event handlers

 Ex: suggest keywords with every char typed

• No submit button!

<? ...

$query = "select entry from Airports

where entry like '" . $_GET['wordKey'] . "%'";

$result = mysql_query($query);

while ($row = mysql_fetch_array($result))

{

print $row['entry'] . ",";

}

?>

<input name='wordKey' onKeyUp='JavaScript:callBack()'>

How to ship back

& inject data?

21Advanced Databases – © P. Baumann

<? echo '{' + '"firstName":' + obj.firstName + ','

+ '"lastName":' + obj.lastName + ','

… + '}'

?>

Step 3: Selective Page Update

 Server

sends:

req.onreadystatechange=function()

{ if(req.readyState==4)

{ var p = eval("(" + req.responseText + ")");

document.myForm.firstName.value = p.firstName;

}

}

 JSON string

sent from

server:

 response

parsing code:

{ "firstName": "John",

"lastName": "Smith",

"address":

{ "streetAddress": "21 2nd Street",

"city": "New York",

"state": "NY",

"postalCode": 10021

},

"phoneNumbers": ["212 732-1234", "646 123-4567"]

}

22Advanced Databases – © P. Baumann

JSON Security Concerns

 JavaScript eval()

• most JSON-formatted text is also syntactically legal JavaScript code!

• built-in JavaScript eval() function executes code received

 Invitation to hack:

embed rogue JavaScript code (server-side attack),

intercept JSON data evaluation (client-side attack)

• Safe alternative: parseJSON() method,

see ECMAScript v4 and www.json.org/json.js

 Cross-site request forgery

• malicious page can request & obtain JSON data belonging to another site

23Advanced Databases – © P. Baumann

AJAX / JSON Portability

 AJAX uses standardized components, supported by all major browsers:

• JavaScript, XML, HTML, CSS

 XMLHttpRequest object part of std DOM

• Windows: ActiveX control Msxml2.XMLHTTP (IE5), Microsoft.XMLHTTP (IE6)

 ...similarly for JSON

24Advanced Databases – © P. Baumann

Sample Tool Support: jQuery

 JavaScript library, http://jquery.com

 Code examples:

$.ajax({

url: "/api/getWeather",

data: {

zipcode: 97201

},

success: function(data) {

$("#weather-temp").html("" + data + " degrees");

}

});

$("button.continue").html("Next Step...")

http://jquery.com/

25Advanced Databases – © P. Baumann

Appraisal: AJAX Advantages

 Reduced bandwidth usage

• No complete reload/redraw, HTML generated locally, only actual data transferred

payload coming down much smaller in size

• Can load stubs of event handlers, then functions on the fly

 Separation of data, format, style, and function

• encourages programmers to clearly separate methods & formats:

Raw data / content normally embedded in XML

webpage HTML / XHTML

web page style elements CSS

Functionality JavaScript + XMLHttp + server code

26Advanced Databases – © P. Baumann

 Response time concerns

from network latency

• Web transfer hidden effects from
delays sometimes difficult to understand
for users

 Reliance on JavaScript

• JavaScript compatibility issue
blows up code;

Remedy: libraries such as prototype

• IDE support used to be poor, changing

• Can switch off JavaScript in my browser

 Security

• Can fiddle with data getting into browser

Appraisal: AJAX Disadvantages

 Browser integration

• dynamically created page

not registered in browser history

• bookmarks

 Search engine optimization

• Indexing of Ajax page contents?

• (not specific to Ajax, same issue with

all dynamic data sites)

 Web analytics

• Tracking of accessing page vs portion

of page vs click?

27Advanced Databases – © P. Baumann

Summary

 AJAX allows to add desktop flavour to web apps

• JSON as lightweight, fast alternative to XML

 Web programming paradigm based on existing, available standards

 Issues: browser compatibility, security, web dynamics

 Manifold usages:

• real-time form data validation; autocompletion; bg load on demand; sophisticated user

interface controls and effects (trees, menus, data tables, rich text editors, calendars,

progress bars, ...); partial submit; mashups (app mixing); desktop-like web app

33Advanced Databases – © P. Baumann

AJAX

(Asynchronous Javascript and XML)

34Advanced Databases – © P. Baumann

History

 Challenge: want more interactivity than "click link / reload complete page“

• HTML's iframes

 Microsoft IE5 XMLHttpRequest object

• Outlook Web Access, supplied with Exchange Server 2000

 2005: term "AJAX" coined by Jesse James Garnett

 made popular in 2005 by Google Suggest

• start typing into Google's search box list of suggestions

35Advanced Databases – © P. Baumann

AJAX

 AJAX = Asynchronous Javascript and XML

 web development technique for creating more interactive web applications

• Goal: increase interactivity, speed, functionality, usability

• not complete page reload small data loads  more responsive

 asynchronous: c/s communication independent from normal page loading

• JavaScript

• XML

• any server-side PL

36Advanced Databases – © P. Baumann

Constituent Technologies

 The core: JavaScript XMLHttpRequest object

• Sends data, waits for response via event handler

• Replaces <FORM> and HTTP GET / POST

 Client DOM manipulated to dynamically display & interact

• Inject response into any place(s) of DOM tree

• client-side scripting language: JavaScript, Jscript, ...

 Some data format

• XML, JSON, HTML, text, ...

 Some server agent

• Servlet, script, ...

37Advanced Databases – © P. Baumann

Ajax Example: Traditional Style

 Client:

<?

echo 'You have entered ' . $_GET['wordKey']

. ' and your IP is: ' . $_SERVER['REMOTE_ADDR'];

?>

<form method='GET' action='http://.../ajax-ex.php'>

word:

<input name='wordKey' type='text'>

<input type='submit' value='Go'>

</form>

You have entered Moribundus, and your IP is: 127.0.0.1

 Server:

 Client, after page reload:

38Advanced Databases – © P. Baumann

Step 1: Avoid Complete Page Reload

function callBack()

{ var SERVICE = 'http://.../ajax-ex.php';

var req = new XMLHttpRequest();

var val = document.forms['wordForm'].wordKey.value;

req.open('GET', SERVICE+'?wordKey='+val, true);

req.setRequestHeader('Content-Type',

'application/x-www-form-urlencoded');

req.send(null);

req.onreadystatechange = function()

{ if (req.readyState == 4)

document.forms['wordForm'].result.innerHtml =

req.responseText;

}

}

<form name='wordForm'>

word:

<input name='wordKey' type='text'>

<input type='button' value='Go' onClick='JavaScript:callBack()'>

<div id='result'></div>

</form>

word: _________________

You have entered Moribundus, and your IP is: 127.0.0.1

0 request not initialized

1 request set up

2 request sent

3 request in process

4 request complete

39Advanced Databases – © P. Baumann

Step 2: Avoid SUBMIT Button

 Before: just re-implemented submit; now: allow c/s activity at any time

• Event handlers

 Ex: suggest keywords with every char typed

• No submit button!

<? ...

$query = "select entry from Airports

where entry like '" . $_GET['wordKey'] . "%'";

$result = mysql_query($query);

while ($row = mysql_fetch_array($result))

{

print $row['entry'] . ",";

}

?>

<input name='wordKey' onKeyUp='JavaScript:callBack()'>

How to ship back

& inject data?

40Advanced Databases – © P. Baumann

JSON

 JSON = JavaScript Object Notation

• Lightweight data interchange format

• MIME type: application/json (RFC 4627)

• text-based, human-readable

 alternative to XML use

• Subset of JavaScript's object literal notation

• 10x faster than XML parsing

• _way_ easier to handle

• JSON parsing / generating code readily available for many languages

"JSON is XML without garbage"

41Advanced Databases – © P. Baumann

<? echo '{' + '"firstName":' + obj.firstName + ','

+ '"lastName":' + obj.lastName + ','

… + '}'

?>

JSON Example

 Server

sends:

req.onreadystatechange=function()

{ if(req.readyState==4)

{ var p = eval("(" + req.responseText + ")");

document.myForm.firstName.value = p.firstName;

}

}

 JSON string

sent from

server:

 response

parsing code:

{ "firstName": "John",

"lastName": "Smith",

"address":

{ "streetAddress": "21 2nd Street",

"city": "New York",

"state": "NY",

"postalCode": 10021

},

"phoneNumbers": ["212 732-1234", "646 123-4567"]

}

42Advanced Databases – © P. Baumann

JSON Security Concerns

 JavaScript eval()

• most JSON-formatted text is also syntactically legal JavaScript code!

• built-in JavaScript eval() function executes code received

 Invitation to hack:

embed rogue JavaScript code (server-side attack),

intercept JSON data evaluation (client-side attack)

• Safe alternative: parseJSON() method,

see ECMAScript v4 and www.json.org/json.js

 Cross-site request forgery

• malicious page can request & obtain JSON data belonging to another site

43Advanced Databases – © P. Baumann

AJAX / JSON Portability

 AJAX uses standardized components, supported by all major browsers:

• JavaScript, XML, HTML, CSS

 XMLHttpRequest object part of std DOM

• Windows: ActiveX control Msxml2.XMLHTTP (IE5), Microsoft.XMLHTTP (IE6)

 ...similarly for JSON

44Advanced Databases – © P. Baumann

Appraisal: AJAX Advantages

 Reduced bandwidth usage

• No complete reload/redraw, HTML generated locally, only actual data transferred

payload coming down much smaller in size

• Can load stubs of event handlers, then functions on the fly

 Separation of data, format, style, and function

• encourages programmers to clearly separate methods & formats:

Raw data / content normally embedded in XML

webpage HTML / XHTML

web page style elements CSS

Functionality JavaScript + XMLHttp + server code

45Advanced Databases – © P. Baumann

 Response time concerns

from network latency

• Web transfer hidden effects from
delays sometimes difficult to understand
for users

 Reliance on JavaScript

• JavaScript compatibility issue
blows up code;

Remedy: libraries such as prototype

• IDE support used to be poor, changing

• Can switch off JavaScript in my browser

 Security

• Can fiddle with data getting into browser

Appraisal: AJAX Disadvantages

 Browser integration

• dynamically created page

not registered in browser history

• bookmarks

 Search engine optimization

• Indexing of Ajax page contents?

• (not specific to Ajax, same issue with

all dynamic data sites)

 Web analytics

• Tracking of accessing page vs portion

of page vs click?

46Advanced Databases – © P. Baumann

Tool Support: Examples

 jQuery, http://jquery.com/

 AJAX:

$.ajax({

url: "/api/getWeather",

data: {

zipcode: 97201

},

success: function(data) {

$("#weather-temp").html("" + data + " degrees");

}

});

$("button.continue").html("Next Step...")

http://jquery.com/

48Advanced Databases – © P. Baumann

Kore rawa e rawaka te reo kotahi

browser

DBMS

HTML

CSS

SQL

JavaScript

python

business logic

