C>ONSTRUCTOR
UNIVERSITY

Transaction Management
Ramakrishnan & Gehrke, Chapter 14+

Advanced Databases — © P. Baumann 1

C>ONSTRUCTOR
UNIVERSITY

Transactions

= Concurrent execution of user requests is essential for good DBMS
performance

 User requests arrive concurrently

» Because disk accesses are frequent, and relatively slow, it is important to keep the
cpu humming by working on several user programs concurrently

= User's program may carry out many operations on data retrieved,
but DBMS only concerned about data read/written from/to database

= transaction (TA) := the DBMS’s abstract view of a user program:
a sequence of (SQL) reads and writes that is executed as a unit

Advanced Databases — © P. Baumann 2

C>ONSTRUCTOR
UNIVERSITY

Concurrency in a DBMS

= Users submit TAs, can think of each (trans)action as execution unit

 Concurrency achieved by DBMS by interleaving TAs

* TA must leave DB in consistent state
assuming DB is consistent when TA begins
» ICs declared in CREATE TABLE, CHECK constraints, etc.

= |ssues:

o Effect of interleaving TAs
 (Crashes

 Performance of concurrency control

Advanced Databases — © P. Baumann 3

C>ONSTRUCTOR
UNIVERSITY

Atomicity of Transactions

= Two possible TA endings:

 commit after completing all its actions — data must be safe in DB
* abort (by application or DBMS) — must restore original state

= |mportant property guaranteed by the DBMS: TAs atomic

 Perception: TA executes all its actions in one step, or none

= Technically: DBMS logs all actions

e can undo actions of aborted TAs

» Write-ahead logging (WAL): save record of action before every update

Advanced Databases — © P. Baumann 4

C>ONSTRUCTOR
UNIVERSITY

ACID

= TA concept includes four basic properties:

= Atomic

« all TA actions will be completed, or nothing

= Consistent

« after commit/abort, data satisfy all integrity constraints

= |solation

 any changes are invisible to other TAs until commit

= Durable

* nothing lost in future; failures occurring after commit cause no loss of data

Advanced Databases — © P. Baumann 5}

C>ONSTRUCTOR
UNIVERSITY

Transaction Syntax in SQL

= START TRANSACTION start TA
= COMMIT end TA successfully
= ROLLBACK abort TA (undo any changes)

= |f none of these TA management commands is present,
each statement starts and ends its own TA

* including all triggers, constraints,...

Advanced Databases — © P. Baumann 6

C>ONSTRUCTOR
UNIVERSITY

Anatomy of Conflicts

= Consider two TAs:

T1: BEGIN A=A-100, B=B+100 END
T2: BEGIN A=1.06"A, B=1.06"B END

* Intuitively, first TA transfers $100 from B’s account to A’s account
 second TA credits both accounts with a 6% interest payment

= no guarantee that T1 will execute before T2 or vice-versa, if both are
submitted together

= However, net effect must be equivalent to these two TAs
running serially in some order

Advanced Databases — © P. Baumann 7

C>ONSTRUCTOR

UNIVERSITY

Anatomy of Conflicts (contd.)
= Consider a possible interleaving (schedule):

T1: A=A-100, B=B+100

T2: A=1.06"A, B=1.06"B
= This is OK. But what about:

T1. A=A-100, B=B+100

T2: A=1.06*A, B=1.06"B
= The DBMS'’s view of the second schedule:

T1: R(A), W(A), R(B), W(B)

T2: R(A), W(A), R(B), W(B)

Advanced Databases — © P. Baumann 8

C>ONSTRUCTOR
UNIVERSITY

Anomalies from Interleaved Execution

= Reading uncommitted data (R/W conflicts, “dirty reads”):

T1: R(A), W(A), R(B), W(B), Abort
T2. R(A), W(A), Commit

= Unrepeatable reads (R/W conflicts):
T1: R(A), R(A), W(A), Commit
T2. R(A), W(A), Commit

= Qverwriting uncommitted data (W/W conflicts):

T1. W(A), W(B), Commit
T2. W(A), W(B), Commit

Advanced Databases — © P. Baumann 9

C>ONSTRUCTOR
UNIVERSITY

Scheduling Transactions: Definitions

= Serial schedule:
Schedule that does not interleave the actions of different TAs

= Equivalent schedules:
For any database state, the effect (on the set of objects in the database) of
executing the first schedule is identical to the effect of executing the
second schedule

= Serializable schedule:
A schedule equivalent to some serial execution of the TAs

= each TA preserves consistency
—> every serializable schedule preserves consistency

Advanced Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Lock-Based Concurrency Control

Core issues: What lock modes? What lock conflict handling policy?

Common lock modes: SX

» Each TA must obtain an S (shared) lock before reading,
and an X (exclusive) lock before writing

|
Lock conflict handling S
|

 Abort conflicting TA/ let it wait / work on previous version

Locking protocols

* two-phase locking (strict, non-strict, conservative, ...) — next!
e Timestamp based
* Multi-version based

Optimistic concurrency control

Advanced Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Two-Phase Locking Protocol

read-lock (X) read-p&k (Z)
write-lock (X) | unlock (X)

write-lock (Y)

= 2PL

* All'locks acquired before first release
« cannot acquire locks after releasing first lock

unlock (Y)

Phase 1: Growing Phase 2: Shrinking

= allows only serializable schedules © begin A commit
» but complex abort processing) —X—
= Strict 2PL
begin con]mit

X X &

» Write locks released at TA end —
» Read locks released earlier (more concurrency)

4

L 2

= Strict 2PL simplifies TA aborts ©©

Advanced Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

2PL Variants

Basic 2PL

Conservative 2PL

* All'locks acquired before transaction execution
» Makes sure TA can get necessary locks

Strict 2PL

 Releasing of write-locks only after TA end

 Avoid cascading abort

Rigorous 2PL

 Releasing of all locks only after TA end

Advanced Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Limitations of 2PL

= Some serializable schedules may not be permitted

 Performance not optimal

= 2PL (and locking in general) may cause deadlocks and starvation

 Deadlock: no transactions can proceed

e Starvation: some transaction wait forever

Advanced Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Isolation Levels

= |solation level directives: summary about TA's intentions, placed before TA

« SET TRANSACTION READ ONLY
TA will not write — can be interleaved with other read-only TAs

« SET TRANSACTION READ WRITE
(default)

= assists DBMS optimizer

= Example: Choosing seats in airplane

 Find available seat, reserve by setting occ to TRUE; if there is none, abort

 Ask customer for approval. If so, commit, otherwise release Seat by setting occ to
FALSE, goto 1

 two "TA"s concurrently: can have dirty reads for occ — uncritical! (why?)

Advanced Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Isolation Levels (contd.)

= Refinement:
SET TRANSACTION READ WRITE ISOLATION LEVEL...

e ...READ UNCOMMITTED
allows TA to read dirty data

* ...READ COMMITTED
forbids dirty reads, but allows TA to issue query several times & get different results
(as long as TAs that wrote them have committed)

« ...REPEATABLE READ

ensures that any tuples will be the same under subsequent reads.
However a query may turn up new (phantom) tuples

e ...SERIALIZABLE
default; can be omitted

Advanced Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Effects of New Isolation Levels

= (Consider seat choosing algorithm:

= |frun at level READ COMMITTED

» seat choice function will not see seats as booked
if reserved but not committed (roll back if over-booked)

» Repeated queries may yield different seats (other TAs booking in parallel)

= |frun at REPEATABLE READ

* any seat found in step 1 will remain available in subsequent queries

* new tuples entering relation (e.g. switching flight to larger plane) seen by new queries

Advanced Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Write-Ahead Logging (WAL)

= All change actions recorded in log file(s)

 Not single tuples, but complete pages affected

Before-Image (BFIM) + After-Image (AFIM) allow choice of redo or undo
Ti writes an object: TA identifier + BFIM + AFIM

Ti commits/aborts; TA identifier + commit/abort indicator

Log records chained by TA id — easy to undo specific TA

= Log written before database update = “write ahead”

 Simply append to log file, so fast
= Log is beating heart of DBMS!

 Use fast storage

« often duplexed & archived on stable storage

Advanced Databases — © P. Baumann 18

C>ONSTRUCTOR

WAL in Action (PostgreSQL)
(1) (2) (3) (4) (5)
CHECKPOINT BEGIN; BEGIN;
INSERT INTO TABLE_A VALUES('A’); INSERT INTO TABLE_A VALUES('B);
COMMIT; COMMIT;
LSN_O \ [LSN_OJ=)LSN_1 [LSN_1] =)LSN_2
shared buffer pool TABLE_A L) — ‘
| A [B[AT |
REDO point A
‘ LSN_1 LSN 2
checkpoint . ’ ’
P Vs &
WAL buffer e \ I / -
[TCHECKPOINT | [[A][COMMIT [[B [| COMMIT
REDO |point
i T LN o
checkpoint e LN ¢
b » » »
WAL segments| | Y v Yy
ast XLOG record] e RPOINT | [[A] COMMIT [[B [COMMIT
[[SNO]

database cluster TABLE_A

A\
AFIMs

[www.interdb.jp]

Advanced Databases — © P. Baumann

C>ONSTRUCTOR
32608 (42 61 54 48 81 2F 83 9A 78 0000 51 SOfiBMS 09 BaZHF/ 7lx. . FIEE. » | |offeet lengh desc UNl\/ERSlTY
32624 (08 080201052568 M MO MEF F 777777, Wttpr /[wwm = 0 24 WAL Frame Header ¥ |
32640 |26 776562 7360 7465 2D 75 £E 61 76 6169 6C |, websi te unavail P ek ErtT
52056 |61 62 6C 65 2 63 0 €0 X 606165 (€ I 7763 [abl e. com/ mai n?wc cup -
32672 |30 45 57 44 6D 48 42 64 35 41 42 68 66 42 78 SA | ~EVI mHSJSABRIBx2 3 gty
52688 |35 47 4168 95 45 51 25 33 44 25 33 44 26 75 72 5GAKFEQYID9308ur 4 Salt-1=-1231116397
32704 (6C DEDELEIECECOEIGC B 77T D31 J434 1 amal | . mi | Bwaldd 4 Salt-2=-1719511045
32720 |30 26 68 30 32 34 37 31 76 69 €6 63 0 30 S 08k =24714i (¢ =008 4 Chedksum-1=383611519
52736 |51 B4 SN 60 68 63 2F 65 6C 62 61 6C 63 61 EnbNSmoc. el bal 1 2 i o e
32752 |76 616E 75 XD ES 7469 736265 77 2E 7777 77 vanu- eti shew. www L il 4
32768 26 09 €8 15,00 04 BAO7 OC 75 S0E0 32 35 3166 |, , |.. . 1, . u¥425Af ﬁ“’ 8 BTree Header - Leaf table
32784 |6C 63 54 42 446D SA S0 | cTBDmZP Bl 1fmg=3
Fgs
I
= 350 Cell powrvter array =175 cells
5] 2 Cel porier 0=5367
= 5391 147 Table B-Tree leaf cel
5301 2 paryload lergth=142
533 3 Key (Row ID)=52559
= 5w 142 Payiosd
5395 1 Record heades length= 13
5397 12 Record keys
5307 1ML "
5338 2 Streg lergthm 8
: & nspection
5401 1 String length=28
5402 1 Integer constant 1
5403 1 Indeger constant O
504 1 Irteger constant 0
5405 1 36 bt integar
5405 18 bitinteger
S407 1 64 bt nteger
5408 1 Strng length=12
|
Offset: e D0XTFED 63 Selected: 0 |
0% B -
Page No: (2/(32) Page Count: |11 Fage Type: WAL e : Unmapped © Stakus: |COND, COND, INT16, INTS, INTE4, TXT12, BLE46, BLES2

——aa—— —

[sqIiteforeBsictoc;Ikit.éoim]

Advanced Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Crash Recovery

= |og also used to recover from system crashes

 Abort all TAs active at crash time
 Re-run changes committed, but not yet permanent at crash time

= Aries recovery algorithm:

 Analysis: Scan log forward (from most recent checkpoint until crash) to identify
* all TAs that were active
« all dirty pages in the buffer pool

» Redo: repeat all updates to dirty pages in the buffer pool as needed
* to ensure that all logged updates are in fact carried out and written to disk

 Undo: nullify writes of all TAs active at crash time working backwards in log
* by restoring "before value" of update, which is in log record for update

Advanced Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Performance Impact

6- ﬁ?&g
= Lock contention H]
A
= —o— Blocking
u Dead|OCk _‘E —+— Immediate-Restart
= 2 —¢— Optimistic
0 |

0 S0 l[l}O lf|30 2{50
. See NGWSQL [ater! Multiprogramming Level

-

Advanced Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Summary

Concurrency control & recovery: core DBMS functions

Users need not worry about concurrency

 System automatically inserts lock/unlocking,
schedules TAs, ensures serializability (or what's requested)

ACID properties!

Mechanisms:
» TAscheduling; Strict 2PL !

» Locks
» Write-ahead logging (WAL)

Advanced Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Outlook: ACID vs BASE

= BASE (Basically Available Soft-state Eventual Consistency)

* Prefers availability over consistency
 Relaxing ACID

= CAP Theorem [proposed: Eric Brewer; proven: Gilbert & Lynch]:
In a distributed system you can satisfy at most 2 out of the 3 guarantees

* Consistency: all nodes have same data at any time
* Availability: system allows operations all the time
* Partition-tolerance: system continues to work in spite of network partitions

= Comparison:

« Traditional RDBMSs: Strong consistency over under a partition

 (Cassandra: Eventual (weak) , availability, partition-tolerance

Advanced Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Discussion: ACID vs BASE

= Justin Sheely: “eventual consistency in well-designed systems does not
lead to inconsistency”

= Daniel Abadi: “If your database only guarantees eventual consistency, you
have to make sure your application is well-designed to resolve all
consistency conflicts. [...] Application code has to be smart enough to deal
with any possible kind of conflict, and resolve them correctly”
» Sometimes simple policies like “last update wins” sufficient
« other apps far more complicated, can lead to errors and security flaws
e Ex: ATM heist with 60s window

DB with stronger guarantees greatly simplifies application design

Advanced Databases — © P. Baumann

https://arstechnica.com/information-technology/2012/10/atm-heist-clears-1-million-exploiting-citigroup-e-payment-flaw/

