
1Advanced Databases – © P. Baumann

Transaction Management
Ramakrishnan & Gehrke, Chapter 14+

2Advanced Databases – © P. Baumann

Transactions

 Concurrent execution of user requests is essential for good DBMS

performance

• User requests arrive concurrently

• Because disk accesses are frequent, and relatively slow, it is important to keep the

cpu humming by working on several user programs concurrently

 user’s program may carry out many operations on data retrieved,

but DBMS only concerned about data read/written from/to database

 transaction (TA) := the DBMS’s abstract view of a user program:

a sequence of (SQL) reads and writes that is executed as a unit

3Advanced Databases – © P. Baumann

Concurrency in a DBMS

 Users submit TAs, can think of each (trans)action as execution unit

• Concurrency achieved by DBMS by interleaving TAs

• TA must leave DB in consistent state

assuming DB is consistent when TA begins

• ICs declared in CREATE TABLE, CHECK constraints, etc.

 Issues:

• Effect of interleaving TAs

• Crashes

• Performance of concurrency control

4Advanced Databases – © P. Baumann

Atomicity of Transactions

 Two possible TA endings:

• commit after completing all its actions – data must be safe in DB

• abort (by application or DBMS) – must restore original state

 Important property guaranteed by the DBMS: TAs atomic

• Perception: TA executes all its actions in one step, or none

 Technically: DBMS logs all actions

• can undo actions of aborted TAs

• Write-ahead logging (WAL): save record of action before every update

5Advanced Databases – © P. Baumann

ACID

 TA concept includes four basic properties:

 Atomic

• all TA actions will be completed, or nothing

 Consistent

• after commit/abort, data satisfy all integrity constraints

 Isolation

• any changes are invisible to other TAs until commit

 Durable

• nothing lost in future; failures occurring after commit cause no loss of data

6Advanced Databases – © P. Baumann

Transaction Syntax in SQL

 START TRANSACTION start TA

 COMMIT end TA successfully

 ROLLBACK abort TA (undo any changes)

 If none of these TA management commands is present,

each statement starts and ends its own TA

• including all triggers, constraints,…

7Advanced Databases – © P. Baumann

Anatomy of Conflicts

 Consider two TAs:

• Intuitively, first TA transfers $100 from B’s account to A’s account

• second TA credits both accounts with a 6% interest payment

T1: BEGIN A=A-100, B=B+100 END

T2: BEGIN A=1.06*A, B=1.06*B END

 no guarantee that T1 will execute before T2 or vice-versa, if both are

submitted together

 However, net effect must be equivalent to these two TAs

running serially in some order

8Advanced Databases – © P. Baumann

Anatomy of Conflicts (contd.)

 Consider a possible interleaving (schedule):

T1: A=A-100, B=B+100

T2: A=1.06*A, B=1.06*B

 This is OK. But what about:

T1: A=A-100, B=B+100

T2: A=1.06*A, B=1.06*B

 The DBMS’s view of the second schedule:

T1: R(A), W(A), R(B), W(B)

T2: R(A), W(A), R(B), W(B)

9Advanced Databases – © P. Baumann

Anomalies from Interleaved Execution

 Reading uncommitted data (R/W conflicts, “dirty reads”):

T1: R(A), W(A), R(B), W(B), Abort

T2: R(A), W(A), Commit

T1: R(A), R(A), W(A), Commit

T2: R(A), W(A), Commit

T1: W(A), W(B), Commit

T2: W(A), W(B), Commit

 Unrepeatable reads (R/W conflicts):

 Overwriting uncommitted data (W/W conflicts):

10Advanced Databases – © P. Baumann

Scheduling Transactions: Definitions

 Serial schedule:

Schedule that does not interleave the actions of different TAs

 Equivalent schedules:

For any database state, the effect (on the set of objects in the database) of

executing the first schedule is identical to the effect of executing the

second schedule

 Serializable schedule:

A schedule equivalent to some serial execution of the TAs

 each TA preserves consistency

every serializable schedule preserves consistency

11Advanced Databases – © P. Baumann

 Core issues: What lock modes? What lock conflict handling policy?

 Common lock modes: SX

• Each TA must obtain an S (shared) lock before reading,
and an X (exclusive) lock before writing

Lock-Based Concurrency Control

| S X
--+-----
S | + -
X | - -

 Lock conflict handling

• Abort conflicting TA / let it wait / work on previous version

 Locking protocols

• two-phase locking (strict, non-strict, conservative, …) – next!

• Timestamp based

• Multi-version based

• Optimistic concurrency control

12Advanced Databases – © P. Baumann

Two-Phase Locking Protocol

 2PL

• All locks acquired before first release

• cannot acquire locks after releasing first lock

 allows only serializable schedules 

• but complex abort processing

begin commit

begin commit

 Strict 2PL

• Write locks released at TA end

• Read locks released earlier (more concurrency)

 Strict 2PL simplifies TA aborts 

Phase 2: Shrinking

read-lock (Z)

Phase 1: Growing

read-lock (X)

write-lock (X)

write-lock (Y)

unlock (X)

unlock (Y)

13Advanced Databases – © P. Baumann

2PL Variants

 Basic 2PL

 Conservative 2PL

• All locks acquired before transaction execution

• Makes sure TA can get necessary locks

 Strict 2PL

• Releasing of write-locks only after TA end

• Avoid cascading abort

 Rigorous 2PL

• Releasing of all locks only after TA end

14Advanced Databases – © P. Baumann

Limitations of 2PL

 Some serializable schedules may not be permitted

• Performance not optimal

 2PL (and locking in general) may cause deadlocks and starvation

• Deadlock: no transactions can proceed

• Starvation: some transaction wait forever

15Advanced Databases – © P. Baumann

 Isolation level directives: summary about TA's intentions, placed before TA

• SET TRANSACTION READ ONLY

TA will not write can be interleaved with other read-only TAs

• SET TRANSACTION READ WRITE

(default)

 assists DBMS optimizer

 Example: Choosing seats in airplane

• Find available seat, reserve by setting occ to TRUE; if there is none, abort

• Ask customer for approval. If so, commit, otherwise release seat by setting occ to
FALSE, goto 1

• two "TA"s concurrently: can have dirty reads for occ – uncritical! (why?)

Isolation Levels

16Advanced Databases – © P. Baumann

Isolation Levels (contd.)

 Refinement:

SET TRANSACTION READ WRITE ISOLATION LEVEL…

• …READ UNCOMMITTED

allows TA to read dirty data

• …READ COMMITTED

forbids dirty reads, but allows TA to issue query several times & get different results

(as long as TAs that wrote them have committed)

• …REPEATABLE READ

ensures that any tuples will be the same under subsequent reads.

However a query may turn up new (phantom) tuples

• …SERIALIZABLE

default; can be omitted

17Advanced Databases – © P. Baumann

Effects of New Isolation Levels

 Consider seat choosing algorithm:

 If run at level READ COMMITTED

• seat choice function will not see seats as booked

if reserved but not committed (roll back if over-booked)

• Repeated queries may yield different seats (other TAs booking in parallel)

 If run at REPEATABLE READ

• any seat found in step 1 will remain available in subsequent queries

• new tuples entering relation (e.g. switching flight to larger plane) seen by new queries

18Advanced Databases – © P. Baumann

Write-Ahead Logging (WAL)

 All change actions recorded in log file(s)

• Not single tuples, but complete pages affected

• Before-Image (BFIM) + After-Image (AFIM) allow choice of redo or undo

• Ti writes an object: TA identifier + BFIM + AFIM

• Ti commits/aborts: TA identifier + commit/abort indicator

• Log records chained by TA id easy to undo specific TA

 Log written before database update = “write ahead”

• Simply append to log file, so fast

 Log is beating heart of DBMS!

• Use fast storage

• often duplexed & archived on stable storage

19Advanced Databases – © P. Baumann

WAL in Action (PostgreSQL)

[www.interdb.jp]

AFIMs

20Advanced Databases – © P. Baumann

[sqliteforensictoolkit.com]

WAL Inspection

21Advanced Databases – © P. Baumann

Crash Recovery

 Log also used to recover from system crashes

• Abort all TAs active at crash time

• Re-run changes committed, but not yet permanent at crash time

 Aries recovery algorithm:

• Analysis: Scan log forward (from most recent checkpoint until crash) to identify

• all TAs that were active

• all dirty pages in the buffer pool

• Redo: repeat all updates to dirty pages in the buffer pool as needed

• to ensure that all logged updates are in fact carried out and written to disk

• Undo: nullify writes of all TAs active at crash time working backwards in log

• by restoring "before value" of update, which is in log record for update

22Advanced Databases – © P. Baumann

Performance Impact

 Lock contention

 Deadlock

 See NewSQL later!

23Advanced Databases – © P. Baumann

 Concurrency control & recovery: core DBMS functions

 Users need not worry about concurrency

• System automatically inserts lock/unlocking,

schedules TAs, ensures serializability (or what’s requested)

 ACID properties!

 Mechanisms:

• TA scheduling; Strict 2PL !

• Locks

• Write-ahead logging (WAL)

Summary

24Advanced Databases – © P. Baumann

Outlook: ACID vs BASE

 BASE (Basically Available Soft-state Eventual Consistency)

• Prefers availability over consistency

• Relaxing ACID

 CAP Theorem [proposed: Eric Brewer; proven: Gilbert & Lynch]:

In a distributed system you can satisfy at most 2 out of the 3 guarantees
• Consistency: all nodes have same data at any time

• Availability: system allows operations all the time

• Partition-tolerance: system continues to work in spite of network partitions

 Comparison:

• Traditional RDBMSs: Strong consistency over availability under a partition

• Cassandra: Eventual (weak) consistency, availability, partition-tolerance

25Advanced Databases – © P. Baumann

Discussion: ACID vs BASE

 Justin Sheely: “eventual consistency in well-designed systems does not

lead to inconsistency”

 Daniel Abadi: “If your database only guarantees eventual consistency, you

have to make sure your application is well-designed to resolve all

consistency conflicts. […] Application code has to be smart enough to deal

with any possible kind of conflict, and resolve them correctly”

• Sometimes simple policies like “last update wins” sufficient

• other apps far more complicated, can lead to errors and security flaws

• Ex: ATM heist with 60s window

• DB with stronger guarantees greatly simplifies application design

https://arstechnica.com/information-technology/2012/10/atm-heist-clears-1-million-exploiting-citigroup-e-payment-flaw/

