
1Advanced Databases (P. Baumann)

The Relational Model



2Advanced Databases (P. Baumann)

 Technically: Relation made up of 2 parts:

• Schema: specifies name of relation, plus name and type of each column

• Ex: Students(sid: string, name: string, login: string, gpa: real)

• Instance: a table, with rows and columns 

• # rows = cardinality, # fields = degree / arity

Relational Database: Definitions

Students sid     name   login     gpa

changes all 

the time

does not 

change often

attributetuple

 Mathematically: 

• Let A1, …, An (n>0) be value sets, called attribute domains

• relation R A1 … An = { (a1,…,an) | a1 A1, …, an An }

 Can think of a relation as a set of rows or tuples

• i.e., all rows are distinct = no duplicates (hmm…)

• atomic attribute types only – no fancies like sets, trees, …

 Relational database: a set of relations



3Advanced Databases (P. Baumann)

 major strength of relational model: simple, powerful querying of data

• Data organised in tables, query results are tables as well

• Small set of generic operations, work on any table structure

 Query describes structure of result ("what"),
not algorithm how result is achieved ("how") 

• data independence, optimizability

 Queries can be written intuitively, 

DBMS responsible for efficient evaluation

• key: precise (mathematical) semantics for relational queries

• Allows optimizer to extensively re-order operations

Querying Relational Databases



4Advanced Databases (P. Baumann)

SQL, Structured English Query Language

 Here: DML = Data Manipulation Language

 "all students with GPA<3.6"

• SELECT  *
FROM  Students S
WHERE  S.gpa < 3.6

sid   name  login      gpa

-----------------------------

53666 Jones jones@cs   3.4

53688 Smith smith@eecs 3.2

53650 Smith smith@math 3.8

sid   name  login      gpa

-----------------------------

53666 Jones jones@cs   3.4

53688 Smith smith@eecs 3.2

name  login

----------------

Jones jones@cs

Smith smith@eecs

 To find just names and logins, 

replace the first line:

• SELECT  S.name, S.login



5Advanced Databases (P. Baumann)

SQL Joins: Querying Multiple Relations

 What does the following query compute?

• SELECT  S.name, E.cid

FROM  Students S, Enrolled E

WHERE  S.sid=E.sid AND E.grade=“A”

sid   name  login      gpa

-----------------------------

53666 Jones jones@cs   3.4

53688 Smith smith@eecs 3.2

53650 Smith smith@math 3.8

sid   cid         grade

-----------------------

53831 Carnatic101 C

53831 Reggae203   B

53666 Topology112 A

53688 History105  B

 …given the following instances of Students and Enrolled:

 …we get?



6Advanced Databases (P. Baumann)

DML: Modifying the Database

 insert a single tuple:

• INSERT INTO Students( sid, name, login, gpa )

VALUES ( 53688, „Smith‟, „smith@ee‟, 3.2 )

 delete all tuples satisfying some condition:

• DELETE FROM Students S

WHERE S.name = „Smith‟

 change all tuples satisfying some condition:

• UPDATE Students S

SET gpa = 3.0

WHERE S.name = „Smith‟



7Advanced Databases (P. Baumann)

Integrity Constraints

 Integrity constraint = IC

= condition that must be true for any instance of the database

• e.g., domain constraints

• ICs are specified when schema is defined

• ICs are checked when relations are modified

 Primary Key, Referential Integrity, Multiplicity, CHECK constraints, …

 A legal instance of a relation is one that satisfies all specified ICs

 Goal: data more faithful to real-world meaning

• Also: avoid some data entry errors



8Advanced Databases (P. Baumann)

Primary Key, Foreign Key, Referential Integrity

 Primary Key = (set of) attributes identifying tuple in a relation

 Foreign key = (set of) attributes `referring‟ to tuple in another relation

• Aka ̀ logical pointer‟

 Example: sid is a foreign key referring to Students:

• Enrolled(sid: string, cid: string, grade: string)

 If all foreign key constraints enforced: referential integrity

• Can you name a model w/o referential integrity?



9Advanced Databases (P. Baumann)

Referential Integrity in SQL

 SQL/92 and SQL:1999 options 

on deletes and updates:

• Default is NO ACTION

(delete/update is rejected)

• CASCADE  

(also delete all tuples that refer to 

deleted tuple)

• SET NULL / SET DEFAULT  

(sets foreign key value of referencing 

tuple)

CREATE TABLE Enrolled

(sid CHAR(20),

cid CHAR(20),

grade CHAR(2),

PRIMARY KEY  (sid,cid),

FOREIGN KEY (sid)

REFERENCES Students

ON DELETE CASCADE

ON UPDATE SET DEFAULT )

treat corresponding Enrolled tuple 

when Students (!) tuple is deleted



10Advanced Databases (P. Baumann)

Where do ICs Come From?

 semantics of real-world enterprise described in database relations

 can check database to see if IC is violated, 

but can NEVER infer that an IC is true by looking at an instance

• IC = statement about all possible instances!

 Key & foreign key ICs most common; plus more general ICs (later)



11Advanced Databases (P. Baumann)

ER  Relational: Entity Sets

 Entity sets to tables:

• ER attribute table attribute

(can do that because ER constrained 

to simple types, same as in relational model)

• Declare key attribute “Primary key” CREATE TABLE Employees 

( ssn CHAR(11),

name CHAR(20),

lot  INTEGER,

PRIMARY KEY (ssn) )

Employees

ssn
name

lot

CREATE TABLE Employees 

( sid INTEGER,

ssn CHAR(11) UNIQUE,

…,

PRIMARY KEY (sid) )

 Best practice (not followed by book):

Add “abstract” identifying key attribute

• No further semantics

• System generated

• use only this as primary key & for referencing



12Advanced Databases (P. Baumann)

ER  Relational: Relationship Sets

 Keys for each participating entity set  

(as foreign keys)

 All descriptive attributes

CREATE TABLE Works_In

( ssn CHAR(11),

did  INTEGER,

since  DATE,

PRIMARY KEY (ssn, did),

FOREIGN KEY (ssn) 

REFERENCES Employees,

FOREIGN KEY (did) 

REFERENCES Departments )



13Advanced Databases (P. Baumann)

ER  Relational: ISA Hierarchies

 H ISA E: every H entity is also E entity

 Mapping to Relations

• Several choices

• Constraints determine

Contract_Emps

hourly_wages
ISA

Hourly_Emps

contractid
hours_worked

name
ssn

Employees

lot



14Advanced Databases (P. Baumann)

ISA Hierarchies: Mapping Variants
• #1: 3 tables

• Create table E( eid, ssn, name, lot)
create table H( eid, hwg, hw)
create table C( eid, cid )

• „hourly emps“: SELECT ssn, name, lot, hwg, hw FROM E, H WHERE E.eid = H.eid
„all emps“: SELECT ssn, name, lot FROM E

• #2: 2 tables

• EH( eid, ssn, name, lot, hwg, hw )
EC( eid,ssn, name, lot, cid)

• „hourly emps“: SELECT ssn, name, lot, hwg, hw FROM EH
„all emps“: (SELECT ssn, name, lot FROM EH) UNION (SELECT ssn, name, lot FROM EC) 

• #3: 1 table

• EHC(eid, ssn, name, lot, isH, hwg, hw , cid ) ex: <42, 123213, „John Doe“, 5, false, NULL, NULL, 17>

• „hourly emps“: SELECT ssn, name, lot, hwg, hw FROM EHC WHERE isH=true
„all emps“: SELECT ssn, name, lot FROM EHC

• x



15Advanced Databases (P. Baumann)

Views

 view = relation, described by query (not stored data)

 Deletion:

CREATE  VIEW  YoungActiveStudents (name, grade)

AS SELECT   S.name, E.grade

FROM  Students S, Enrolled E

WHERE  S.sid = E.sid and S.age < 21

DROP VIEW YoungActiveStudents



16Advanced Databases (P. Baumann)

Views and Security

 Views useful for personalized information (or a summary), 

while hiding details in underlying relation(s)

 Given YoungStudents, but not Students or Enrolled, 

we can find students who are enrolled

 …but not the cid‟s of the courses they are enrolled in



17Advanced Databases (P. Baumann)

Relational Model: Summary

 A tabular representation of data

 Simple & intuitive, most widely used

 Integrity constraints can be specified by the DBA, based on application 

semantics; DBMS checks for violations

• primary and foreign keys + domain constraints + …

 SQL query language for generic set-oriented table handling

• Attribute selection (“projection”); set-oriented tuple grabbing (“selection”); joins

 Rules to translate ER to relational model

• Not all concepts translate 1:1


