
Access Control on Big Data and Small Pixels:

How to Achieve Privacy and Security

Peter Baumann, Dimitar Mišev
Jacobs University, p.baumann@jacobs-university.de, d.misev@jacobs-university.de

Abstract – With high-volume, function-rich Web services on

spatio-temporal raster data on the rise there is a growing

need for adaptive access control. However, while the data-

cube paradigm has proven suitable for large-scale, efficient

raster services it is not yet clear how appropriate access con-

trol mechanisms can be provided to service administrators.

In this contribution we provide a model which extends the

SQL datacube query language, SQL/MDA, with flexible

definition and enforcement of array-aware access control.

Index Terms – access control, array, coverage, datacube,

rasdaman

MOTIVATION

Web services offering scientific data are emerging in in-

creasing numbers, based on the progress technology has

made recently. There is a strong movement towards open

data. A radical interpretation of open data is that (observed

or generated) data should be available to everybody without

restriction and pricing. However, there are more different-

iated views, too. For industrial and safety or privacy critical

governmental services it is obvious that access has to be

controlled tightly. However, even scientists acting in non-

commercial and often not safety-critical environments (here

a maximum of free information flow is theoretically possib-

le) make strong claims for protecting access to data: re-

searchers enjoy protection of their data for some grace

period to grant them a – generally considered legitimate –

right to publish any findings first.

This considers data sets as a whole, i.e., a ―all or no-

thing‖ access. However, with multi-Petabytes getting online

[1] this is no longer adequate; rather, access protection also

of spatial and/or temporal regions must be considered. For

example, the European Centre for Medium-Range Weather

Forecast (ECMWF) offers very long timeseries of climate

data. While the long tail of data is accessible for free the

most recent two weeks are priced.

Further, services tend to evolve from pure data extract-

ion and download to more and more flexible, user-specified

processing in the server prior to downloading results. Given

that power of executing foreign code in a server the pro-

cessing cycles themselves become a cost-relevant factor

which, however, is highly fluctuating between requests and,

therefore, hard to oversee for the service provider as

compared to fixed-effort requests.

In this paper we focus on spatio-temporal datacubes [2],

our research question being: how can effective access con-

trol be achieved on massive datacubes? Obviously, such a

mechanism should be aware of the characteristics of data-

cubes in both data and service aspects. For example, access

control must be able to differentiate access to different

regions and times and react individually.

Our research – manifest in the rasdaman scalable, dist-

ributed datacube engine [3] – specifically concentrates on

datacube services based on a declarative array query

language (which meantime has been incorporated in the ISO

SQL standard [4]). Hence, we propose an array access

control mechanism based on the following key requirements:

 Based on the proven standards of Role-Based Access

Control (RBAC) as per SQL;

 Array specific access specification and granularity, in

particular: protecting arbitrary regions in an n-D array,

down to the level of single pixels;

 Allow mandatory access control;

 Amenable to the various query optimization techniques.

In our approach we use SQL triggers for defining con-

straints on array access and processing, together with actions

executed whenever a constraint is violated. Such triggers are

always applied to queries, except when the user firing the

query has been exempted by the administrator. Array-specif-

ic constraints can rely on array query expressions, which are

suitably enhanced with new operators.

In the sequel, we consider the state of the art, introduce

array-aware access control, provide representative use cases,

and give conclusions.

STATE OF THE ART

SQL has outstandingly elaborate access control functionality

[5]. User privilege management in standard databases is

done through Role-Based Access Control (RBAC). Clients

open database sessions under some known user name, at the

same time undergoing authentication; this determines the

privileges the session will have, one of SELECT, INSERT,

UPDATE, and DELETE; role hierarchies help to organize

such privileges for the various users. There is no specific

support for array access control in SQL.

The MongoDB NoSQL system offers privileges listing

allowed operations, but no fine-grain access into its objects.

The SciDB Array DBMS defines access control only on

complete arrays, actually: so-called namespaces which are

directory-like collections of arrays [9]. This is too inflexible

5671978-1-5386-9154-0/19/$31.00 ©2019 IEEE IGARSS 2019

Authorized licensed use limited to: Constructor University Bremen gGmbH. Downloaded on March 23,2025 at 16:58:31 UTC from IEEE Xplore. Restrictions apply.

and coarse-grain for the advanced use cases under discussion

here.

As SQL until recently did not support datacubes, such

services (including satellite imagery and climate / weather

archives) resorted to ad-hoc implementations which usually

are not aware of many of central database features such as

declarative query languages and fine-grain access control.

Classically, therefore, satellite imagery as well as weather

and climate data centers operate on semantic-less files as

atomic units of access. Consequently, data type specific

access control is not possible, including safeguarding, for

example, arbitrary regions in a multi-dimensional datacube.

In the widely used OPeNDAP Hyrax server, for example,

access control is a known open issue [10].

A series of systems, such as the Australian Geoscience

Data Cube [8], offer access via python programming. Client

authentication is forwarded to the operating system, meaning

that operating system login names are exposed to the

Internet. Access to objects is done on a file basis, so again

authorization is delegated to the operating system. Array-

specific authorization (such as protecting particular regions)

is not supported.

A principal problem is posed by the expressiveness of a

service: the more powerful it is, the harder it is to control.

For example, allowing any client out in wilderness to ship

any foreign python code to a server and execute it there

without further precaution establishes a first-class goal for

all sorts of attacks – it is well known in Computer Science

that a program can never comprehend other procedural (i.e.,

Turing-complete) programs in general, so there is no way of

sufficient automatic protection. Hence, procedural code is

too dangerous for service APIs. Better in this respect are

declarative languages – like SQL – which tentatively are

restricted in their power to a degree that such automatic

checking is possible; additionally, this opens the door for all

sorts of automatic optimization of queries prior to evaluat-

ion, including parallelization and distribution.

This is where SQL triggers [5] come into play. Triggers

represent one way of specifying (possibly multi-table) con-

straints on high level. A trigger basically consists of an event

(such as an INSERT or UPDATE operation), a condition to

be evaluated whenever that event occurs, and an action to be

executed should the constraint be fulfilled. Introduced

mainly for automated database consistency control, triggers

form a proven tool: definition is high-level, they can be

adjusted anytime without programming, and are amenable to

all query optimization mechanisms. However, they likewise

do not support fine-grain array access control.

In conclusion, there is no mechanism currently available

for array-friendly access control. SQL has the most

convenient concepts with RBAC and triggers, but does not

support arrays either.

ARRAY-AWARE ACCESS CONTROL

In this section we introduce a concept which makes

SQL RBAC array-aware. We rely on the standard user / role

paradigm as hooks for all database privileges, plus SQL

triggers.

I. Triggers

First, we extend the classical trigger concept by adding

SELECT to the list of allowed events so as to guard read

access, too (ISO SQL only allows INSERT, UPDATE; and

DELETE). In the condition specification of a trigger we

naturally allow array SQL expressions. This allows express-

ing data specific conditions, but not yet access. To this end

we introduce two predicates, ACCESSED(A) and

MODIFIED(A) where A is some array-valued expression.

The result is a Boolean array of the same size as A where

each cell contains true iff this cell in A gets accessed by the

query under consideration, or modified, respectively. By

collapsing this Boolean array through an aggregation regions

in the array can be specified conveniently, such as

MDANY(ACCESSED(A[100:200,300:400]))

This checks whether any of the cells in the interval be-

tween corner points (100,300) and (200,400) undergoes a

read access.

For the case that a condition is fulfilled a corresponding

action is defined with the trigger, such as aborting the query:

EXCEPTION ―Error: insufficient privileges on object.‖

Next, we connect triggers to users and roles. We

remember that normally a trigger is always checked, so we

do not need to add a trigger to user or role privileges; rather,

we need to remove – i.e.: deactivate – it. To accomplish this

we enhance the SQL GRANT statement with an option to

exempt a user or role from a particular trigger:

GRANT EXEMPTION FROM TRIGGER t TO role

The semantics is that from now on all queries executed

under this role will not involve activation of the trigger –

hence, its corresponding restriction is waived. This actually

yields a safe model for restrictions: in the first place,

constraints always hold; they need to be explicitly and

consciously disabled.

II. Context

So far we have addressed unconditional access restrict-

ions for particular users. Sometimes, however, this should be

more dynamic. Quota, for example, should fire only in case

some assigned threshold is exceeded.

In our approach we still rely on the privilege/trigger

concept, but enhance it with knowledge about the current

query through an addressable context object. Among others,

this object provides information about data accessed, query

result volume, and compute resources spent. In the next

section we show how this can be used to define various

quota policies.

As triggers apply prior to query execution some of the

above context items are not yet available. Such information

is provided through the cost-based query optimizer which

anyway needs to calculate query costs in order to find a part-

5672

Authorized licensed use limited to: Constructor University Bremen gGmbH. Downloaded on March 23,2025 at 16:58:31 UTC from IEEE Xplore. Restrictions apply.

icularly efficient evaluation strategy. Such strategy takes in-

to account the actual data situation, such as object locations,

array tiling, and sizing parameters. Decision criteria include:

most efficient formulation of expressions; parallelization

potential, including use of heterogeneous hardware; distrib-

uted processing in federations. For the avoidance of doubts,

this of course is an a-priori estimate which very much de-

pends on the accuracy achieved. Obtaining accurate estim-

ates is an area of active research in our array query optimiz-

ation work, to be published in a forthcoming paper.

If allowed by policy such estimates can be made avail-

able to a client in advance so that the client still can decide

whether it wants to fire off a particular heavy-weight query.

Finally, billing records can be generated a posteriori,

based on the actual resource consumption (which in turn

allows an assessment of the optimizer’s estimate quality).

USE CASES

In this Section we present practical use cases for defining

access control policies using the ―trigger as privilege‖

concept. Citing our initial example we assume a 4-D climate

data collection ERA5 holding some amount of global climate

variables over some period of time.

I. Protecting time slices

In the introductory example ECMWF protects its most

recent two weeks of data. Below the most recent data are

characterized by sub-datacube S:

CREATE TRIGGER Latest_2_weeks_disallowed

 SELECT ON ERA5

 WHEN

 MDANY(ACCESSED(ERA5[S]))

 BEGIN

 EXCEPTION "Error: no access rights on this area."

 END

The logins of governmental organizations, for example,

could be exempted from this trigger to get free access. Other

users might get access, but with a record added to their bill.

On a side note, as this query obviously fails even if only

one single disallowed pixel is accessed: without difficulty

this predicate can be adjusted for an overlap by at least N

pixels, X percent of the forbidden area, or some other

empirical measure.

II. Protecting areas

Assume P is a vector polygon over some area, expressed in

WKT (Well-Known Text). Then, the following query will

disallow access to the P area:

CREATE TRIGGER Protect_by_Area

 SELECT ON ERA5

 WHEN

 MDANY(ACCESSED(clip(ERA5, P)))

 BEGIN

 EXCEPTION "Error: no access rights on this area."

 END

Note that clip(), while available in rasdaman, is not yet

standardized in SQL/MDA, but foreseen as future work.

III. Protecting by mask

Areas accessible can be described in any possible way, in-

cluding involving another object – of course, access must be

allowed for the query to this additional object as well, so this

requires careful policy design. Below we use a mask object

ERAmask given by a Boolean array of the same size as the

primary array. Should a cell get accessed where the corresp-

onding mask cell value is true then access gets denied:

CREATE TRIGGER Protect_by_Mask

 SELECT ON ERA5, ERAmask

 WHEN

 MDANY(ACCESSED(ERA5) AND ERAmask)

 BEGIN

 EXCEPTION "Error: no access rights on this area."

 END

IV. Quota

Various quota situations can be modeled through triggers.

First, we assume a user is constrained by the amount of data

accessed, e.g., 1 MB as below:

CREATE TRIGGER Quota_on_Access

 SELECT ON ERA5

 WHEN

 MDCOUNT_TRUE(ACCESSED(ERA5)) > 1000000

 BEGIN

 EXCEPTION "Error: data access volume exceeded."

 END

Dynamic quota can be defined in conjunction with some

appropriate database modeling where past consumption is

recorded. In this case, the trigger can extract the remaining

query budget rather than using the constant value shown in

the above example.

During our many years of experience with massive

queryable datacubes we have learnt that for users it is often

not easy to oversee how many data they actually download –

the new quality of direct access and manipulation, paired

with fast processing, frequently makes them over-

enthusiastic about network bandwidth. Earlier download

quota, however, required manual programming and still

were a-posteriori – it could happen that massive data were

produced on the server just to be prevented from down-

loading them in the end. Now guarding downloads can be

easily expressed by the administrator and checked a-priori:

CREATE TRIGGER Quota_on_Download

 SELECT ON ERA5

 WHEN

 CONTEXT.COST.RESULTVOLUME > 1000000000

 BEGIN

 EXCEPTION "Error: download volume exceeded."

 END

Finally, federations can be protected from excessive

load generation. The following trigger prohibits federation

5673

Authorized licensed use limited to: Constructor University Bremen gGmbH. Downloaded on March 23,2025 at 16:58:31 UTC from IEEE Xplore. Restrictions apply.

queries entirely, effectively restricting queries to local

access:

CREATE TRIGGER Disable_Federation

WHEN

 CONTEXT.COST.TRANSFERVOLUME > 0

BEGIN

 EXCEPTION

 "Error: Federated processing required for answering this

 query, but rights for this user/roles are insufficient."

END

Note that there is no constraint on operation nor object

in this trigger, so it will always apply. Note also that the

execution plan assessed is always an efficient one generated

by the optimizer, and therefore the query will execute locally

if possible – only if federated processing is inevitable a

query thus guarded will fail.

CONCLUSION

With the advent of even more ―Big Data‖ offered online in

combination with more powerful and flexible services on

them we need to consider access control for reasons of data

privacy and security, service attack protection, general

housekeeping such as quota, and more. Generic mechanisms

like file-based access control and role-based access control

reach their limits when it comes to complex conditions

which require knowledge of the particular data model, such

as multi-dimensional arrays.

We propose the ―trigger as privilege‖ concept as a nat-

ural enhancement of the proven RBAC model available with

standard SQL systems. Assuming an array model and its op-

erations present, such as in the ISO SQL/MDA standard, we

introduce

 A trivial extension to triggers to also observe SELECTs;

 Array-specific predicates providing meta-information

about the query wrt. data locations read or updated;

 An extension of the GRANT (and REVOKE) statement

to explicitly exempt particular users and their queries

from trigger checking;

 A global context object providing information about a

query, in particular its expected costs.

To the best of our knowledge there is no other approach

published which conveys the same power, flexibility, and

ease of use. Notably, this concept only affects authorization

and still allows any sort of external authentication (such as

SAML tokens, LDAP, etc.).

These array triggers are implemented in rasdaman, the-

reby validating implementability. Next, we will apply access

control in several projects (such as BigDataCube [6] and

Landsupport [7]) and with various rasdaman operators from

industry and academia. In particular from the several rasda-

man-based Earth data federations already active we expect

valuable practical input.

Preliminary experiments have shown that triggers per se

do not impose a particular extra load to the system. Check-

ing for applicable triggers adds some negligible constant

overhead. Checking trigger constraints depends on their

complexity, but undergoes the same optimization scrutiny as

all regular queries. Moreover, array tiles loaded for con-

straint evaluation and subsequently needed again for query

processing remain in cache, so obviously constraint check-

ing usually does not cause extra disk access.

A challenge is that checks must be performed a-priori

whereas exact information about the costs incurred is only

available a-posteriori. In particular for procedural interfaces

like python based tools (such as, e.g., the Australian Data

Cube) this is hard, if not impossible, to achieve. Fortunately,

the cost-based optimizer of a datacube query system like

rasdaman provides such information already, and – as first,

preliminary tests show – at an acceptable quality.

In rasdaman OGC-based WMS, WCS; and WCPS Web

APIs are offered where users see objects with their spatio-

temporal coordinates, not the Cartesian index coordinates of

the internal array. All such requests are uniformly translated

into ―Array SQL‖ queries internally, so they automatically

are subject to access control. Ongoing implementation will

transform the access control information to geo Web service

level, in particular: allowing administrators to define limit-

ations in geo/time coordinates, rather than pixel coordinates.

ACKNOWLEDGMENT

This work is being supported by H2020 LandSupport,

H2020 EOSC-hub, and German BMWi BigDataCube.

REFERENCES

[1] Baumann, P., Rossi, A.P., Misev, D., Dumitru, A., Merticariu, V.,

Huu, B.P., Figuera, R.M., Kakaletris, G., Koltsida, P., Siemen, S.,
Wagemann, J., Clements, O., Hogan, P., ―Big Earth Data at Your

Fingertips‖, In: Mathieu, P.P., Aviset, C. (eds.): Earth Observation

Open Science and Innovation, ISSI Publications 2017, pp. 91 – 119

[2] Baumann, P., Misev, D., Merticariu, V., Pham Huu, B., ―Datacubes:

Towards Space/Time Analysis-Ready Data‖, In: J. Doellner, M. Jobst,

P. Schmitz (eds.): Service Oriented Mapping - Changing Paradigm in
Map Production and Geoinformation Management, Springer Lecture

Notes in Geoinformation and Cartography, 2018

[3] Baumann, P., Misev, D., Merticariu, V., Pham Huu, B., Bell, B.,
―rasdaman: Spatio-Temporal Datacubes on Steroids‖, Proc ACM

SIGSPATIAL, Seattle, USA, November 7, 2018

[4] ISO, ―Information technology — Database languages — SQL — Part
15: Multi-Dimensional Arrays‖, ISO 9075-15:2018

[5] ISO, ―Information technology — Database languages — SQL — Part

2: Foundation‖, ISO 9075-2:2016

[6] N.n., ―BigDataCube‖, http://www.bigdatacube.org/

[7] N.n., ―Landsupport‖, https://www.landsupport.eu/

[8] N.n., ―Australian Geoscience Data Cube‖,

http://www.datacube.org.au/

[9] N.n., ―SciDB Security Model Overview―,
https://paradigm4.atlassian.net/wiki/spaces/scidb/pages/421068858/Se

curity+Model+Overview

[10] N.n.,‖Hyrax: Support File-level access control‖
https://github.com/samvera/hyrax/issues/1621

5674

Authorized licensed use limited to: Constructor University Bremen gGmbH. Downloaded on March 23,2025 at 16:58:31 UTC from IEEE Xplore. Restrictions apply.

